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Let (M, g, J) be a compact Hermitian manifold of complex
dimension n, where J denotes an integrable complex struc-
ture and g is compatible with J

g(J ·, J ·) = g(·, ·).
We denote by ! = g(J ·, ·) the Kähler form associated to it.

Is there a geometric method of studying these manifolds?



We say that g is a Kähler metric if

d! = 0.

The Ricci flow preserves this Kählerian condition and pro-
vides a very important tool for studying Kähler manifolds.
In particular, there is a program of classifying Kähler man-
ifolds birationally by Kähler-Ricci flow as Jian Song and I
advocated. Many works have been done due to the efforts of
a number of mathematicians.

However, the Ricci flow does not preserve Hermitian struc-
tures on non-Kähler manifolds.



Let S = {Sk¯l} be the “Ricci” curvature of the Chern con-
nection of g = (gi¯j):
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Let T = {Tk¯li} be the torsion of g:

Tk¯lp =

@gk¯l
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� @gi¯l
@zk

.

Note that g is Kähler if and only if T = 0.



J. Streets and I introduced a family of new curvature flows
on Hermitian metrics g(t):

@g

@t
= �S +

ˆQ(T ),

where ˆQ(T ) is a quadratic function of torsion T .

These flows coincide with the Kähler-Ricci flow if the initial
metric is Kähler.

We prove: For any given Hermitian metric g
0

, the above
flow has a unique solution g(t) on [0, T ) with g(0) = g

0

.



Streets and I also developed an analytic theory for the pluri-
closed flow analogous to that by Hamilton-Shi for Ricci
flow. this includes the evolution equations for curvature and
torsion, derivative estimates.

For instance, we proved that if the maximal existence time
is T < 1, then

lim

t!T
sup{|⌦| + |rT | + |T |} = 1.



There are two flows which are of special properties:

1. ˆQ = Q, where Qk¯l = gi
¯jgpq̄Tkq̄iTlp̄j.

2. Q = 0.

We abbreviate the first flow as PCF and the second as HCF.



Let us discuss PCF. First we recall the pluri-closed condi-
tion.

Let (M, g, J) be a Hermitian manifold and ! be its Kähler
form. The form g is pluriclosed if

@ ¯@ ! = 0.



As Gauduchon showed in 1977: There exists a unique u 2
C1

(M) such that
R
M udV = 0 and @ ¯@

�
e2u!

�n�1

= 0.

Pluri-closed metrics always exist on complex surfaces.

If a complex manifold M admits a symplectic structure !
whose (1,1)-part is positive, then it is a pluriclosed manifold.



Streets and I proved that if ˆQ = Q, then the corresponding
Hermitian curvature flow preserves the pluri-closed condi-
tion, that is, if g

0

is pluri-closed, so does every g(t) along
the flow.

In fact, we proved that in terms of Kähler forms, the flow is
equivalent to

@!

@t
= @@⇤!! +

¯@ ¯@⇤!! +

p�1 @ ¯@ log det g.

Clearly, it implies the pluri-closed condition is preserved.



There is another formulation through the Bismut connection
r which is defined via

< rXY, Z >=< DXY,Z > +

1

2

d!(JX, JY, JZ),

where D denotes the Levi-Civita connection of ! and J
denotes the complex structure.

Let P be the Chern form of this connection, i.e. in complex
coordinates,

Pij = ⌦

k
ijk,

where ⌦ denotes the curvature of r. Then

P = S � dd⇤!.



Hence, the pluri-closed flow is the same as

@!

@t
= �P 1,1.

This turns out to be a very useful formulation. For instance,
we proved that if the maximal existence time is T < 1, then

Z T

0

|P 1,1| = 1.

This extends a result of N. Sesum. Also, using this formu-
lation, we can identify our flow with the renormalization
group flow twisted with B-fields in theoretic physics.



Let (M,!(t), J) be a solution of pluriclosed flow. Define
H = �d!(J, J, J). Then H is closed since ! is pluriclosed.
Let X = (�Jd⇤!)[ and �t be its integral curve, then we have

• (Streets-Tian) (�⇤t (g(t)),�⇤t (H(t))) is a solution to the
renormalization group flow twisted with B-fields.

We should emphasis that it is a prior unclear why the renor-
malization group flow twisted with B-fields preserves the
pluri-closed condition. One needs to figure out how com-
plex structures evolve along the renormalization group flow.



Applying a result of Oliynyk-Suneeta-Woolgar, we can show
that F is monotonic along the pluri-closed flow, where

F (g,H, f ) :=

Z

M

✓
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12

|H|2 + |rf |2
◆
e�fdV.

In particular, there are no periodic solutions to the pluri-
closed flow.



Define

H1,1
@+¯@

=

{� 2 ⇤

1,1
R | @ ¯@� = 0}

{@� +

¯@�̄ | � 2 ⇤

0,1}.
Furthermore, in analogy with the Kähler cone, let

P@+¯@ = {[�] 2 H1,1
@+¯@

| 9�,� + @� +

¯@�̄ > 0}.
Conjecture: Let !(t) be a solution to PCF on M . Let

⌧ = sup{t > 0 | [!(t)] 2 P@+¯@}.
Then the solution exists on [0, ⌧ ).



This cone can be characterized in a nice way on complex
surfaces:

Streets-Tian: Let (M4, J) be a complex, non-Kähler surface,
and let � 2 ⇤

1,1 be pluriclosed. Then � 2 P@+¯@ if and only
if
• RM � ^ �

0

> 0

• RD � > 0 for every effective divisor with negative self
intersection.



A generalized Kähler manifold, denoted by (M, g, JA, JB),
consists of a smooth manifold with two integrable complex
structures JA, JB and a metric g which is compatible with
both, satisfying:

dcA!A = H = �dcB!B, ddcA!A = 0.

These equations were discovered by Gates, Hull, and Rocek
in 80s in their studying the supersymmetric sigma models
and later “rediscovered” by Gualtieri.

• (Streets-Tian) Pluriclosed flow preserves generalized
Kähler structure, after coupling with evolution equations
for JA, JB.



A special case of generalized Kähler geometry occurs when
[JA, JB] = 0. In this case one has a symmetric endomor-
phism Q = JAJB which satisfies Q2

= Id. Thus Q has
eigenvalues ±1 with the corresponding eigenspace decom-
position

TM = T
+

M � T�M.

The commuting generalized Kähler manifolds include prod-
ucts of Riemann surfaces, diagonal Hopf surfaces, Inoue sur-
faces.
• (J. Streets) Pluriclosed flow preserves commuting general-
ized Kähler geometry, and moreover reduces to a parabolic
flow of a scalar potential function.



The bundles T
1,0
± have determinants ⇤

k
(T

1,0
+

),⇤l(T
1,0
� ).

These in turn have first Chern classes ⇢±.
Consider projections: ⇡± : ⇤

1,1
(T ⇤M) ! ⇤

1,1
(T ⇤±M), put

 ± = ⇡± . Then the flow becomes
@!

@t
= �(⇢+

+

� ⇢�
+

� ⇢+� + ⇢��).



Locally, in coordinates (z, w) 2 U ⇢ Ck ⇥ C`, we have

! =

p�1(@z ¯@zu � @w ¯@wu),

where u is smooth such that
p�1@z ¯@zu > 0 andp�1@w ¯@wu < 0.

So the pluri-closed flow in this case is a fully nonlinear,
nonconvex scalar PDE.



(J. Streets): If (M, g
0

, J±) is a non-Kähler, generalized
Kähler surface satisfying [J

+

, J�] = 0, then for any initial
g
0

, the pluri-closed flow has a global solution. Also if M is a
surfaces of general type, the normalized pluriclosed flow ex-
ists for all time and converges to the unique Kähler-Einstein
metric on (M,J

+

).

This is the first result on the global existence of the pluri-
closed flow and shows that its restriction to generalized
Kähler metrics resembles the Kähler-Ricci flow.



To prove the result, one needs to prove a priori bound for the
potential function u, an upper bound for the metric which
can be derived from an evolution equation for @

+

@�u and a
C2,↵-estimate for u.

For the Kähler-Ricci flow, the corresponding C2,↵ is ob-
tained by applying the Evans-Krylov theory.

In our case, the equation is nonconvex, so the Evans-Krylov
theory does not apply. Streets-Warren extended the Evans-
Krylov theory to certain nonconvex equations which is
sufficient for the above case.



A result of Streets-Warren: If u : Ck ⇥ Cl ! R be a
solution of

det uzz̄
det�uww̄

= 1

on B
2

(0) satisfying:
p�1@z ¯@zu >0 and

p�1@w ¯@wu < 0.
Then there exists C, � > 0 such that

||u||C2,�
(B

1

)

 C||u||C1,1
(B

2

)

.



The other extremal case is when the 2-form � due to [JA, JB]
is non-degenerate. There are examples of such generalized
Kähler structures.

Recently, J. Streets proved that given a non-degenerate gen-
eralized Kähler surface, the generalized Kähler-Ricci flow
with this initial data exists for all time and converges to a
weakly hyperKähler structure.



Next we consider

@g

@t
= �S.

In the following, I will briefly discuss some recent results of
Yury Ustinovskiy on this flow.



Given any Hermitain manifold (M,!, J), we denote by ⌦

the curvature of the Chern connection. We say (M,!, J) is
Griffiths non-negative if for any ⇠, ⌘ 2 T 1,0M , we have

⌦(⇠, ¯⇠, ⌘, ⌘̄) � 0.

Ustinovskiy proved that if the initial metric has Griffiths
non-negative, so does g(t) along the Chern flow. Moreover,
if the Chern the Chern curvature at t = 0 is Griffiths-positive
at some point x 2 M , then for any t > 0, the Chern curva-
ture is Griffths-positive everywhere.



Ustinovskiy also proved a strong Maximum principle analo-
gous to that of Hamilton for Ricci flow:

Let g(t) (t 2 [0, ⌧ )) be a solution to Hermitian curvature
flow. Assume that the Chern curvature at t = 0 is Griffiths
non-negative. Then for any t > 0 the set

Z = {(⇠, ⌘) | ⇠, ⌘ 2 T 1,0M, ⌦(⇠, ¯⇠, ⌘, ⌘̄) = 0 }
is invariant under torsion-twisted parallel transport

r�0⇠ = T (�0, ⇠), r�0⌘ = 0.



He also proved a better theorem on maximal existence time:

Let g(t) (t 2 [0, ⌧ )) be a solution to HCF on a compact com-
plex Hermitian manifold. Assume that [0, ⌧ ) is the maximal
time interval on which solution to HCF exists. Then

lim

t!⌧
||⌦||C0

= 1.



In the proof, Ustinovskiy found very nice formulation for
curvature and torsion evolution equations: In moving uni-
tary frame:

D⌦

dt
= �

T
⌦ + T (⌦) + F(⌦),

where T (⌦) is linear in ⌦ with coefficients given by rT and
F(⌦) is the same as that in Hamilton’s Ricci flow.

DT

dt
= �T + Q(T ),

where Q(T ) is linear in T with coefficients given by ⌦.



Here are definition of T and Q and F :

T (⌦)(⇠, ¯⇠, ⌘, ⌘̄) = �2Re

X
⌦(rēiT (⇠, ei),

¯⇠, ⌘, ⌘̄).

Q(T )(⇠, ⌘) =

X
⌦(T (ei, ⌘), ēi)⇠ � ⌦(T (ei, ⇠), ēi)⌘.

Also �

T is the Laplacian of rT which is defined by

rT
e ⇠ = re⇠ + T (⇠, e).


