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Short-time existence (Hamilton). If h is a smooth Riemannian
metric on a compact manifold M, there is a unique family of
metrics {g(t)}t2[0,T ) with g(0) = h satisfying the Ricci flow
equation

@g

@t
= �2 Ric(g) ,

defined on a maximal time interval [0,T ).

If T < 1 then the curvature blows up as t ! T .



Examples.

If g(0) is the standard metric on the n-sphere S

n, then

g(t) = (1� 2(n � 1)t)g(0).

Here the curvature blows up as t ! 1
2(n�1) .

If g(0) is a “barbell” metric on S

3, then the Ricci flow
{g(t)}t2[0,T ) will develop a neck pinch singularity.

Here only part of the metric goes singular, while elsewhere it
has a smooth limit as t ! T .

Q: Can one continue the flow past the first singular time?



Ricci flow with surgery:

(Hamilton, Chen-Zhu) 4d Ricci flows with positive isotropic
curvature.

(Hamilton, Perelman) 3d Ricci flow.

Applications of Ricci flow with surgery:

Thurston’s Geometrization Conjecture.

Classification of 4-manifolds with positive isotropic curvature.



Note. Ricci flow with surgery is not a canonical construction,
because it involves a number of choices.

Perelman: “It is likely that by passing to the limit in this
construction one would get a canonically defined Ricci flow through
singularities, but at the moment I don’t have a proof of that.”

Q: How can one formalize Perelman’s assertion?

Q: What is a Ricci flow through singularities?

Q: What notion of convergence should one use?



Weak/generalized solutions to geometric PDE’s:

Minimal submanifolds.

Harmonic maps.

Einstein metrics.

Harmonic map heat flow.

Mean curvature flow.

Agenda: Define generalized solutions and study their structure —
existence, uniqueness, partial regularity, compactness, etc.



Mean curvature flow

There is a strong analogy between mean curvature flow and Ricci
flow, especially between mean curvature flow of surfaces in R3, and
Ricci flow in dimension 3.

There are several notions of generalized solutions to the mean
curvature flow equation:

(Enhanced) Brakke flows.

Level set flow.

Flow with surgery.



In the case of mean curvature flow with a smooth initial condition
with positive mean curvature, fundamental work of White and
Huisken-Sinestrari gives deep understanding of mean curvature
flow.

The theory of generalized solutions is very satisfactory in this case.
In particular:

• All notions of generalized solution agree in the natural sense, and
one has existence of a unique solution.

• The analog of Perelman’s assertion is true.



Related work

Feldman-Ilmanen-Knopf (2003). Kahler-Ricci flow through an
isolated singularity.

Angenent-Knopf (2007), Angenent-Caputo-Knopf (2012).
Existence of Ricci flow (with precise asymptotic control)
starting from a singular initial condition corresponding to a
generic neckpinch.

Song-Tian (2009), Eyssidieux-Guedj-Zeriahi (2014).
Kahler-Ricci flow through singularities.



To formulate the first theorem, I will recall some facts about Ricci
flow with surgery.

Disclaimer. Due to time constraints and the nature of Ricci flow
with surgery, details have been suppressed.



Def. A (primitive) Ricci flow with surgery is given by:

Ricci flows

{(Mk ⇥ [t�k , t+k ), gk(·))}1kN ,

where t

+
k = t

�
k+1 for all 1  k < N, and the flow gk goes

singular at t+k for each k < N.

Open subsets ⌦k ⇢ Mk where the metric has a smooth limit
ḡk as t ! t

+
k , for k < N.

Compact 3-dimensional submanifolds with boundary

X

+
k ⇢ ⌦k

which survive the “surgery”.

Isometric embeddings

 k : X+
k �!  k(X

+
k ) = X

�
k+1 ⇢ Mk+1



Perelman constructs a Ricci flow with surgery starting at any initial
Riemannian 3-manifold (M, g(0)), that satisfies several additional
conditions:

(Controlled surgery) Cutting is performed along necks of a
specified scale and quality, and the surgery caps are well
approximated by standard caps.

(Hamilton-Ivey pinching) This implies that the full
curvature tensor Rm is controlled by the scalar curvature R ,
and that when R is large the curvature is “almost
nonnegative”:

Rm & � R

logR
.

(Canonical neighborhoods) At any point with large scalar
curvature R , the flow is well-approximated by a model
solution (“-solution”) or by a standard postsurgery solution.



Def. A Ricci flow spacetime is a tuple (M, t, @t, g) where:

M is a smooth manifold-with-boundary.

t is the time function – a submersion

t : M ! [0,1)

such that the boundary of M is precisely the time-zero slice:
@M = t�1(0).

@t is the time vector field, satisfying @tt ⌘ 1.

g is a smooth Riemannian metric on the spatial subbundle

ker(dt) ⇢ TM ,

g defines a Ricci flow:

L@t g = �2Ric(g) .



For 0  a < b we write

Ma = t�1(a), M[a,b] = t�1([a, b])

Ma = t�1([0, a]) .



For every Ricci flow with surgery in the sense of Perelman, there is
an associated Ricci flow spacetime M obtained by gluing together
the spacetimes from the time intervals. Henceforth we will conflate
this spacetime with the Ricci flow with surgery.

Theorem. Let {Mj}1j=1 be a sequence of three-dimensional Ricci
flows with surgery (in the sense of Perelman) where:

The initial conditions {Mj
0} are isometric to a fixed compact

Riemannian 3-manifold.

If �j : [0,1) ! (0,1) denotes the Perelman surgery
parameter for Mj then limj!1 �j(0) = 0.

Then, after passing to a subsequence, {Mj} converges to a Ricci
flow spacetime (M1, t1, @t1 , g1), in a sense described below.

Informally, this means that up to di↵eomorphisms defined on larger
and larger subsets, the flows are closer and closer.



There is a sequence of di↵eomorphisms

{�j : Mj � Uj ! Vj ⇢ M1} ,

between open sets such that:

For all t, R 2 [0,1), and large j , we have:

Uj � Mj
t̄ \ {R  R},

Vj � M1
t̄ \ {R  R}.

�j is time preserving.

The sequences {�j
⇤@tj}, {�

j
⇤gj} converge smoothly on

compact subsets of M1 to @t1 and g1, respectively.



Furthermore, M1 inherits geometric features of the Ricci flows
with surgery:

The scalar curvature function R : M1 ! R is bounded below.

R is proper on M1
T for all T � 0.

M1 satisfies the Hamilton-Ivey pinching condition.

M1 satisfies a strengthened version of the canonical
neighborhood assumption: points with large R are modelled
on -solutions.

This theorem gives a partial answer to Perelman’s question, by
formalizing the notion of limit and convergence, and proving
subsequential convergence.

Remark. A similar theorem holds for 4d Ricci flows with surgery,
assuming positive isotropic curvature.



Motivated by the theorem, we make the following definition:

Def. A Ricci flow spacetime (M, t, @t, g) is a singular Ricci flow
if it is 4-dimensional, the initial time slice M0 is a compact
Riemannian manifold and:

The scalar curvature function R : M1 ! R is bounded below.

R is proper on M1
T for all T � 0.

M satisfies the Hamilton-Ivey pinching condition.

M satisfies the canonical neighborhood assumption.

Remark. It su�ces to assume the latter two conditions hold
outside of a compact subset of MT , for every T .



Corollary. If N is a compact Riemannian 3-manifold, then there is
a singular Ricci flow M with initial condition isometric to N.

Theorem. (Compactness) If {Mj} is a sequence of singular
Ricci flows, and the initial conditions Mj

0 lie in a compact set of
metrics in the smooth topology, then a subsequence converges to a
limiting singular Ricci flow M1, as in the statement of the
previous convergence theorem.



Conjecture. If two singular Ricci flows have the same initial
condition, then they are the same, up to a di↵eomorphism that
preserves the time functions, the time vector fields, and the
metrics.

This conjecture together with the convergence theorem implies an
a�rmative answer to Perelman’s question.

Remark. One could potentially apply Ricci flow to families of
Riemannian metrics. One would need uniqueness in order to get
continuous dependence of the flow on the initial condition.



Ingredients in the proof of the convergence theorem

Spacetime metric. If (M, t, @t, g) is a Ricci flow spacetime,
there is a unique Riemannian metric gM on M whose
restriction to ker(dt) is g , and such that @t is a unit vector
field orthogonal to ker(dt).

Locally controlled geometry. The canonical neighborhood
assumption implies that asymptotically, the geometry of the
Riemannian manifold (M, gM) is controlled locally, as a
function of the scalar curvature function R : M ! R.



Compactness for spacetimes. The collection of pointed
spacetimes with locally controlled geometry is compact.

Connectedness to M0 with controlled R. Any point x in
Mj

t can be joined to the initial time slice by a time preserving
curve with controlled length and scalar curvature.

Def. If M is a Ricci flow spacetime, a path

� : [a, b] ! M

is time-preserving if t(�(t)) = t for all t 2 [a, b].



In the remainder of the talk, I will discuss some additional results
about singular Ricci flows, that are not a priori, limits of Ricci
flows with surgery.

These are of interest both because they say something about the
limiting behavior of Ricci flow with surgery, and because they show
that singular Ricci flows are good objects.

In what follows, (M, t, @t, g) will be a fixed singular Ricci flow.



Theorem. (Behavior of volume)

For every t, the time slice Mt has finite volume.

t 7! vol(Mt) is a locally Holder continuous function with a
locally bounded upper right derivative.

In the convergence theorem, the sequence of volume functions

{Vj : [0,1) ! [0,1]}j , Vj(t) = vol(Mj
t)

converges uniformly on compact time intevals to the volume
function

V1(t) = vol(M1
t ) .



R is integrable on MT for all T .

For t1 < t2, the usual formula holds:

vol(Mt2)� vol(Mt1) = �
Z

M[t1,t2]

R dvol .

For every a < 1:
Z

Mt

R

a
dvol < C = C (M0, t, a) .

In particular
vol(Mt \ {R � R}) ! 0

as R ! 1.



Structure of the thin part. For every t, the part of Mt with
large R has standard geometry and topology. It is contained
in a disjoint union of connected components {Ci} where each
Ci is di↵eomorphic to R3, a spherical space form, or an
isometric quotient of S2 ⇥ R.

Ends. Each connected component of Mt has only finitely
many ends, and taking the completion adds at most one point
for every end.

Components persist backward in time. If
�1, �2 : [a, b] ! M are time preserving curves, and �1(b),
�2(b) lie in the same connected component of Mb, then
�1(t), �2(t) lie in the same component of Mt for all t 2 [a, b].



Causal structure

Def. If M is a Ricci flow spacetime, the worldline of x 2 M is
the maximal time-preserving integral curve of @t passing through x .
A bad worldline is a worldline � : I ! M that doesn’t start at
time zero.

Theorem. Let M be a singular Ricci flow, t � 0. For any
connected component C of Mt , there are only finitely many points
in C with bad worldlines. In particular, there are only countably
many bad worldlines in M.



Example. If one has a generic neckpinch singularity at t = T ,
then the theorem says that only finitely many worldlines (in this
case two) can emerge from the singularity.

The main part of the proof of the theorem is devoted to showing
that if � : (t0,T ) ! M is a bad worldline, then for t close to t0,
�(t) is trapped in a “fingertip” which goes singular as t & t0.

This is based on a new dynamical stability result for cylinders.



The fact that the union of the bad worldlines has measure zero
plays a key role in the proof of the properties of the volume.


