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Geometric motivation

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n.
The Kodaira dimension of X is  := kod(X ) 2 {�1, 0, 1 . . . , n}, s.t.

dimCH
0(X ,K j

X

) ⇠ j.

kod(X ) is a birational invariant

Today always assume 0  kod(X )  n (”negative Ricci curvature”)

Building blocks are Calabi-Yau varieties (kod(X ) = 0, mK
X

= 0)
and Varieties of general type (kod(X ) = n, vol(K

X

) > 0)

Our main focus is on the case 0 < kod(X ) < n (vol. collapsing)
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Geometric motivation

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension n � 1.

Fix !
0

a Kähler form and consider the Kähler-Ricci flow

⇢
@!
@t = �Ric(!)
!|t=0

= !
0

This flow admits a unique solution ! = !(t, x) = !
t

(x) on a maximal
domain [0,T

max

[⇥X , where

T
max

= sup{t > 0 ; {!
0

}� tc
1

(X ) is Kähler }.

Thus T
max

= +1 i↵ K
X

is nef (smooth minimal model)

Volume not collapsing if kod(X ) = n (and kod(X ) = 0).
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Geometric motivation

An ambitious program [Song-Tian]

A natural and di�cult problem is to understand the asymptotic behavior
of !

t

as t ! T
max

. Ideally one would like to

show that (X ,!
t

) converges to a midly singular Kähler variety
(X

1

, S
1

) equipped with a singular Kähler current S
1

;

try and restart the KRF on X
1

with initial data S
1

;

repeat finitely many times to reach a minimal model X
r

;

study the long term behavior of the NKRF (K
X

r

is nef),

⇢
@!
@t = �Ric(!)� !t

!|t=0

= S
r

and show that (X
r

,!
t

) converges to a canonical model (X
can

,!
can

).
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Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).

OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.

OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.

�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Program achieved in dimension one, Hamilton [1986] & Chow [1991].

More or less complete in dimension two (...Song-Weinkove [2013]).

Program however largely open in dimension � 3.

Many di�culties to overcome, among them

Degenerate initial data (Kähler current rather than a Kähler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

Construct canonical limits and prove convergence.
�! today’s lecture.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 5 / 26



Geometric motivation

Known results

Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]

Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]

Cv on smooth minimal models of intermediate Kodaira dimension
[Song-Tian07, Song-Tian12, Tosatti-Weinkove-Yang14, etc]

Cv on arbitrary minimal models of intermediate Kodaira dimension :

Theorem (EGZ16)

Let X be a 3-dim. minimal model with canonical singularities. The NKRF
continuously deforms any Kähler form !

0

to a canonical current T
can

.

Main ingredient=viscosity methods [EGZ16]
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Geometric motivation

Mild singularities

Singularities showing up in the Minimal Model Program

Su�cient for our purpose to deal with canonical singularities,
i.e. X is Q-Gorenstein of finite index and for any resolution,

K
˜

X

= ⇡⇤K
X

+
X

i

a
i

E
i

with a
i

� 0

Example :
P

n

j=0

z2
j

= 0  ! the ordinary double point.

This is not a quotient singularity if n � 3.
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Parabolic scalar equations

Complex Monge-Ampère flows

Solving the normalized Kähler-Ricci flow is equivalent to solving

(CMAF ) (!
t

+ ddc'
t

)n = e'̇t

+'
t

+h(t,x)e (x)dV (x),

t 7! !
t

(x) continuous family of semi-positive closed (1, 1)-forms;

(t, x) 7! h(t, x) is continuous

 is quasi-psh and continuous (i.e. e is continuous),

and (t, x) 7! '(t, x) = '
t

(x) is the unknown function.
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Parabolic scalar equations

Degeneracies

We work on a smooth manifold X̃ , obtained by desingularizing a singular
model: if ⇡ : X̃ ! X denotes a resolution of singularities, then

!
t

= ⇡⇤✓
t

are pull-backs of Kähler forms hence no longer Kähler;

the RHS vanishes along the exceptional divisors, e.g.

e =
NY

j=1

|s
j

|2
h

 ! canonical singularities.
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Parabolic scalar equations

Existence result

We always assume that !
t

is ”regular”, i.e.

9✓ semi-positive and big s.t. ✓  !
t

for all t;

9" 2 C1 with "(0) = 0 s.t. !
s

(1� "(t � s))  !
t

.

Theorem (EGZ14)

If '
0

is an arbitrary continuous !
0

-psh function, there exists a unique
viscosity solution (t, x) 7! '

t

(x) of (CMAF) with initial value '
0

.
The function '

t

is the upper envelope of viscosity subsolutions. In
particular x 7! '

t

(x) is !
t

-plurisubharmonic for all t � 0.

NB: need extension of this result to manifolds with boundary [EGZ16]
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Parabolic scalar equations

Classical sub/super/solutions

Definition

A function ' 2 C1,2 is a classical subsolution of (CMAF) if for all t � 0
x 7! '

t

(x) is !
t

-psh and

(!
t

+ ddc'
t

)n � e'̇t

+'
t

+h(t,x)e (x)dV (x)

A function ' 2 C1,2 is a classical supersolution of (CMAF) if

(!
t

+ ddc'
t

)n
+

 e'̇t

+'
t

+h(t,x)e (x)dV (x)

Here ✓
+

(x) = ✓(x) if ✓(x) � 0 and ✓
+

(x) = 0 otherwise.
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Parabolic scalar equations

Viscosity subsolutions

Definition

Given u : X
T

:= (0,T )⇥ X̃ ! R an u.s.c. bounded function and
(t

0

, x
0

) 2 X
T

, q is a di↵erential test from above for u at (t
0

, x
0

) if

q 2 C1,2 in a small neighborhood V
0

of (t
0

, x
0

);

u  q in V
0

and u(t
0

, x
0

) = q(t
0

, x
0

).

Definition

An u.s.c. bounded function u : X
T

! R is a viscosity subsolution of
(CMAF) if for all (t

0

, x
0

) 2 X
T

and all di↵erential tests q from above,

(!
t

0

(x
0

) + ddcq
t

0

(x
0

))n � e q̇t0 (x0)+q

t

0

(x

0

)+h(t

0

,x
0

)e (x0)dV (x
0

).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 13 / 26



Parabolic scalar equations

Viscosity subsolutions

Definition

Given u : X
T

:= (0,T )⇥ X̃ ! R an u.s.c. bounded function and
(t

0

, x
0

) 2 X
T

, q is a di↵erential test from above for u at (t
0

, x
0

) if

q 2 C1,2 in a small neighborhood V
0

of (t
0

, x
0

);

u  q in V
0

and u(t
0

, x
0

) = q(t
0

, x
0

).

Definition

An u.s.c. bounded function u : X
T

! R is a viscosity subsolution of
(CMAF) if for all (t

0

, x
0

) 2 X
T

and all di↵erential tests q from above,

(!
t

0

(x
0

) + ddcq
t

0

(x
0

))n � e q̇t0 (x0)+q

t

0

(x

0

)+h(t

0

,x
0

)e (x0)dV (x
0

).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 13 / 26



Parabolic scalar equations

Viscosity subsolutions

Definition

Given u : X
T

:= (0,T )⇥ X̃ ! R an u.s.c. bounded function and
(t

0

, x
0

) 2 X
T

, q is a di↵erential test from above for u at (t
0

, x
0

) if

q 2 C1,2 in a small neighborhood V
0

of (t
0

, x
0

);

u  q in V
0

and u(t
0

, x
0

) = q(t
0

, x
0

).

Definition

An u.s.c. bounded function u : X
T

! R is a viscosity subsolution of
(CMAF) if for all (t

0

, x
0

) 2 X
T

and all di↵erential tests q from above,

(!
t

0

(x
0

) + ddcq
t

0

(x
0

))n � e q̇t0 (x0)+q

t

0

(x

0

)+h(t

0

,x
0

)e (x0)dV (x
0

).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 13 / 26



Parabolic scalar equations

Viscosity subsolutions

Definition

Given u : X
T

:= (0,T )⇥ X̃ ! R an u.s.c. bounded function and
(t

0

, x
0

) 2 X
T

, q is a di↵erential test from above for u at (t
0

, x
0

) if

q 2 C1,2 in a small neighborhood V
0

of (t
0

, x
0

);

u  q in V
0

and u(t
0

, x
0

) = q(t
0

, x
0

).

Definition

An u.s.c. bounded function u : X
T

! R is a viscosity subsolution of
(CMAF) if for all (t

0

, x
0

) 2 X
T

and all di↵erential tests q from above,

(!
t

0

(x
0

) + ddcq
t

0

(x
0

))n � e q̇t0 (x0)+q

t

0

(x

0

)+h(t

0

,x
0

)e (x0)dV (x
0

).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 13 / 26



Parabolic scalar equations

Viscosity super/solutions

Definition

A l.s.c. bounded function v : X
T

! R is a viscosity supersolution of
(CMAF) if for all (t

0

, x
0

) 2 X
T

and all di↵erential tests q from below,

(!
t

0

(x
0

) + ddcq
t

0

(x
0

))n
+

 e q̇t0 (x0)+q

t

0

(x

0

)+h(t

0

,x
0

)e (x0)dV (x
0

).

Definition

A viscosity solution of (CMAF) is a continuous function which is both a
viscosity subsolution and a viscosity supersolution.
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Parabolic scalar equations

Basic facts

Assume u is C1,2-smooth. It is a viscosity subsolution i↵ it is !
t

-psh
and a classical subsolution (similar result for supersolution).

If u
1

, u
2

are viscosity subsolutions, then so is max(u
1

, u
2

).

If (u↵)↵2A is a loc. unif. bdd above family of subsolutions, then

' := (sup{u↵, ↵ 2 A})⇤ is a subsolution.

If u is a subsolution of (CMAF )µ, where µ := eh+ dV , then it is also
a subsolution of (CMAF )⌫ for all 0  ⌫  µ.

u is a subsolution of (CMAF )
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Parabolic scalar equations

The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+16)

Assume u is a subsolution to (CMAF) and
v is a supersolution to (CMAF).

Then u
0

 v
0

=) u
t

 v
t

for all t > 0.

! implies uniqueness of solutions.
! the key to the existence of solutions.
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Convergence of the Normalized Kähler-Ricci flow

The canonical twisted Kähler-Einstein current

Let X be an abundant minimal model with canonical singularities:

K
X

is a semi-ample Q-line bundle,  =Kodaira dimension of X , and

f : X ! X
can

= Iitaka fibration, A ample Q-line bdle s.t. K
X

= f ⇤A.

Generic fiber X
y

= f �1(y) is a Q-Calabi-Yau variety.

Fix h
A

a positive hermitian metric of A with curvature form !
A

.

Fix ⌘ local (multivalued) non-vanishing hol. section of K
X

, h̃
A

= f ⇤h
A

and v(h
A

) = c
n

⌘^⌘
||⌘||2

˜

h

A

= globally well defined volume form on X .

Lemma

The measure f⇤v(h
A

) has density in L1+" w.r.t to !
A

.
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Convergence of the Normalized Kähler-Ricci flow

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

There exists a unique continuous !
A

-psh function '
can

on X
can

s.t.

(!
A

+ ddc'
can

) = e'can f⇤(v(h
A

)).

The current !
can

= !
A

+ ddc'
can

is independent of h
A

.

It is smooth in X reg

can

\ critical values of f.
It satisfies Ric(!can) = �!can + !WP in X reg

can

\ critical values.

Result due to Song-Tian [ST07,ST12] when X is smooth.

Weil-Petersson metric $ variation of cplx structure of CY fibers.
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Convergence of the Normalized Kähler-Ricci flow

The canonical twisted Kähler-Einstein current

The current T
can

= f ⇤!
can

is an important birational invariant s.t.

Lemma (ST12)

T 
can

^ !n�
SF

= e'can

�f v(h
A

).

Here !
SF

= !
0

+ ddc⇢=fiberwise family of Ricci flat KE metrics

!
SF |X

y

= unique Ricci flat metric in {!
0

}|X
y

[EGZ09]

Conjecture (EGZ16)

The function ⇢ is smooth in a Zariski open set.

OK when X is smooth [Yau78] or when dimC X = 3.

[Choi15 ?] : the function ⇢ is !
0

-psh in all variables (i.e. !
SF

� 0)
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0

-psh in all variables (i.e. !
SF

� 0)
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Convergence of the Normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

(!
t

+ ddc'
t

)n

C
n

e�(n�)t = e'̇t

+'
tv(h

A

).

Particular case of (CMAF) considered above with T = +1, h ⌘ 0 and

e dV = ⇡⇤v(h
A

) if ⇡ : X̃ ! X =desingularization of X ;

!
t

= e�t!
0

+ (1� e�t)f ⇤!
A

so ⇡⇤!
t

is ”regular”;

normalization s.t. the volume of LHS cv to 1 as t ! +1.

Theorem (EGZ16)

If ⇢ smooth on a Zariski open set then '
t

cv to '1 := '
can

� f .

Result due to Song-Tian [ST12] when X is smooth.
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Convergence of the Normalized Kähler-Ricci flow

Idea of the proof

Construct a subsolution u(t, x) of the flow such that

'1  lim
t!+1

u(t, x).

Would like to construct a supersolution v(t, x) such that

'1 � lim
t!+1

v(t, x).

The comparison principle insures '1 = lim
t!+1 '(t, x).

OK for subsolution if ⇢ is !
0

-psh; extra work otherwise.

More involved to provide an accurate supersolution.
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Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)
if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)
if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)
if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)

if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)
if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)
if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing rough sub/supersolutions

Easy uniform bound from above : v(t, x) :⌘ C >> 1 is a supersolution.

Indeed v(0, x) = C � '
0

if C � sup
X

'
0

and

(!
t

+ ddcv)n =
P

j=0

C j

n

e�(n�j)t(1� e�t)j f ⇤!j

A

^ !n�j

0

 C
n

e�(n�)teBv(h
A

)  C
n

e�(n�)te v̇t+v

tv(h
A

)
if C � B .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Pali10)

Assume
V�1

t

(!
t

+ ddc 
t

)n = F
t

dV
X

with F
t

uniformly in L1+" then  
t

is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 / 26



Convergence of the Normalized Kähler-Ricci flow

Construction of a fine subsolution

Consider

u(t, x) = (1� e�t)'1(x) + e�t⇢(x)� Ce�t + h(t)

where h + h0 =  log(1� e�t), h(0) = 0. Then

x 7! u(t, x) is !
t

-psh if ⇢ is !
0

-psh

u
0

(x) = ⇢(x)� C  '
0

if C >> 1

u̇
t

+ u
t

= '1 + h0 + h hence

(!
t

+ ddcu
t

)n � C
n

e�(n�)t(1� e�t)T
can

^ !n�
SF
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can

^ !n�
SF

= C
n

e�(n�)te u̇t+u

tv(h
A

)

Thus u subsolution and lower bound with exp. speed:

�C 0(t + 1)e�t + e�t⇢(x)  ('
t

� '1)(x).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 24 / 26



Convergence of the Normalized Kähler-Ricci flow

Construction of a subsolution

Consider

u(t, x) = (1� e�t)'1(x) + e�t⇢(x)� Ce�t + h(t)

where h + h0 =  log(1� e�t), h(0) = 0. Then

x 7! u(t, x) is !
t

-psh if ⇢ is !
0

-psh

u
0

(x) = ⇢(x)� C  '
0

if C >> 1

u̇
t

+ u
t

= '1 + h0 + h hence

(!
t

+ ddcu
t

)n � C
n

e�(n�)t(1� e�t)T
can

^ !n�
SF

= C
n

e�(n�)te u̇t+u

tv(h
A

)

Thus u subsolution and lower bound with exp. speed:

�C 0(t + 1)e�t + e�t⇢(x)  ('
t

� '1)(x).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 24 / 26



Convergence of the Normalized Kähler-Ricci flow

Construction of a subsolution

Consider

u(t, x) = (1� e�t)'1(x) + e�t⇢(x)� Ce�t + h(t)

where h + h0 =  log(1� e�t), h(0) = 0. Then

x 7! u(t, x) is !
t

-psh if ⇢ is !
0

-psh

u
0

(x) = ⇢(x)� C  '
0

if C >> 1

u̇
t

+ u
t

= '1 + h0 + h hence

(!
t

+ ddcu
t

)n � C
n

e�(n�)t(1� e�t)T
can

^ !n�
SF

= C
n

e�(n�)te u̇t+u

tv(h
A

)

Thus u subsolution and lower bound with exp. speed:

�C 0(t + 1)e�t + e�t⇢(x)  ('
t

� '1)(x).

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 24 / 26



Convergence of the Normalized Kähler-Ricci flow

Constructing a fine supersolution

The construction of an e�cient supersolution is harder :

Need to control mixed terms (f ⇤!
A

+ ddc'1)j ^ !n�j

SF

Use that '1 and ⇢ are smooth in X
can

\ D;

Establish a comparison principle for Kähler manifolds with boundary

Construct a supersolution in X \ V"(D) and conclude.

More technical details in our paper.
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Convergence of the Normalized Kähler-Ricci flow

The end

[ST12] J.Song, G.Tian: Canonical measures and Kähler-Ricci flow.
J. Amer. Math. Soc. 25 (2012), no. 2, 303-353.

[Choi15] Y.-J.Choi: Semi-positivity of fiberwise Ricci-flat metrics on
Calabi-Yau fibrations. Preprint arXiv:1508.00323

[EGZ14] Weak solutions to degenerate complex Monge-Ampère
flows II. Preprint arXiv:1407.2504

[EGZ16] Convergence of weak Kähler-Ricci Flows on minimal
models of positive Kodaira dimension. Preprint arXiv:1604.07001.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 26 / 26


