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Classifying compact Kahler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Let X be a projective algebraic variety of complex dimension n.
The Kodaira dimension of X is k := kod(X) € {—00,0,1...,n}, s.t.

dimeHO(X, Ki) ~ j*=.

@ kod(X) is a birational invariant
@ Today always assume 0 < kod(X) < n (" negative Ricci curvature”)

@ Building blocks are Calabi-Yau varieties (kod(X) = 0, mKx = 0)
and Varieties of general type (kod(X) = n, vol(Kx) > 0)

@ Our main focus is on the case 0 < kod(X) < n (vol. collapsing)
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Let X be a compact Kahler manifold of complex dimension n > 1.
Fix wg a Kahler form and consider the Kahler-Ricci flow

{ % = —Ric(w)

w|t:0 = Wo

This flow admits a unique solution w = w(t, x) = wt(x) on a maximal
domain [0, Tphax[x X, where

Tmax = sup{t > 0; {wo} — tc1(X) is Kahler }.

@ Thus Tpax = +oc iff (smooth )
@ Volume not collapsing if kod(X) = n (and kod(X) = 0).
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An ambitious program [Song-Tian]

A natural and difficult problem is to understand the asymptotic behavior
of wy as t — Tax. ldeally one would like to

show that (X, w;) converges to a midly singular Kahler variety
(X1, S1) equipped with a singular Kahler current Sq;

try and restart the KRF on X7 with initial data Sy;
repeat finitely many times to reach a minimal model X;;
study the long term behavior of the NKRF (K. is nef),

{ % = —Ric(w) — wy
W|t=0 = S5

and show that (X,,w;) converges to a canonical model (Xcan, Wean)-
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Geometric motivation

Known results

@ Program achieved in dimension one, Hamilton [1986] & Chow [1991].
@ More or less complete in dimension two (...Song-Weinkove [2013]).

@ Program however largely open in dimension > 3.

@ Many difficulties to overcome, among them

o Degenerate initial data (Kahler current rather than a Kahler form).
OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lul4].

e Define the KRF on mildly singular varieties.
OK by works of ...[Song-Tian09], [EGZ14].

e Construct canonical limits and prove convergence.
— today'’s lecture.
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Geometric motivation

Known results

@ Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14|
e Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]

@ Cv on smooth minimal models of intermediate Kodaira dimension
[Song-Tian07, Song-Tian12, Tosatti-Weinkove-Yangl4, etc]

@ Cv on arbitrary minimal models of intermediate Kodaira dimension :

Theorem (EGZ16)

Let X be a 3-dim. minimal model with canonical singularities. The NKRF
continuously deforms any Kahler form wq to a canonical current T.,,.

Main ingredient=viscosity methods [EGZ16]
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Mild singularities

@ Singularities showing up in the Minimal Model Program

@ Sufficient for our purpose to deal with canonical singularities,
i.e. X is Q-Gorenstein of finite index and for any resolution,

Ky =m"Kx + Y aiE; with a; > 0

/

@ Example : 21’7:0 zj2 = 0 <— the ordinary double point.

@ This is not a quotient singularity if n > 3.
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Complex Monge-Ampere flows

Solving the normalized Kahler-Ricci flow is equivalent to solving

(CMAF) (we + dd“pp)" = ePrerth(t) v gy(x),

@ t — wi(x) continuous family of semi-positive closed (1, 1)-forms;
@ (t,x) — h(t,x) is continuous

@ 1 is and continuous (i.e. e¥ is continuous),

and (t,x) — o(t, x) = @¢(x) is the unknown function.
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Degeneracies

We work on a smooth manifold X, obtained by desingularizing a singular
model: if 7 : X — X denotes a resolution of singularities, then

@ wy = w0 are pull-backs of Kahler forms hence no longer Kahler;

@ the RHS vanishes along the exceptional divisors, e.g.

N
e¥ = H |s;|7 <— canonical singularities.
Jj=1
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Parabolic scalar equations

Existence result

We always assume that w; is "regular”, i.e.

@ d60 semi-positive and big s.t. 8 < w; for all t;
o Je € C! with £(0) =0 s.t. ws(1 —&(t —5)) < wy.

Theorem (EGZ14)

If o Is an arbitrary continuous function, there exists a unique
viscosity solution (t,x) — ¢+(x) of (CMAF) with initial value vy.
The function @; is the upper envelope of viscosity subsolutions. In
particular x — p¢(x) is for all t > 0.

NB: need extension of this result to manifolds with boundary [EGZ16]
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Classical sub/super/solutions
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(W + dd )" > ePrTeeth(E) g gy (x)
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Parabolic scalar equations

Classical sub/super/solutions

Definition

A function ¢ € C1? is a classical subsolution of (CMAF) if for all t > 0
X = @¢(x) is we-psh and

(W + dd )" > ePrTeeth(E) g gy (x)
A function ¢ € C1? is a classical supersolution of (CMAF) if

A classical solution is both a subsolution and a supersolution.

Here 6 (x) = 0(x) if 8(x) > 0 and 0, (x) = 0 otherwise.

PROBLEM: classical solutions usually do not exist !
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Given u : X1 := (0, T) x X = R an u.s.c. bounded function and
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Given u : X1 := (0, T) x X = R an u.s.c. bounded function and
(to, x0) € X1, q is a differential test from above for u at (to, xp) if

e g € CY? in a small neighborhood Vj of (ty, xo);
o u<gqinVy and u(ty,x0) = q(to, x0)-

An u.s.c. bounded function u: X7 — R is a viscosity subsolution of
(CMAF) if for all (ty, x0) € Xt and all differential tests q from above,

(wto (XO) —I— ddcqto (XO))n Z eqto(X0)+qt0(X0)+h(t07X0)e",b(XO)dV(XO).
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Viscosity super/solutions

A |.s.c. bounded function v : Xt — R is a viscosity supersolution of
(CMAF) if for all (ty, x0) € X1 and all differential tests q from below,

(wWey(X0) 4 dd€qs, (x0))7 < edto0)Far o) +hlto o) g (x0) g1/ ().
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Viscosity super/solutions

A |.s.c. bounded function v : Xt — R is a viscosity supersolution of
(CMAF) if for all (ty, x0) € X1 and all differential tests q from below,

(wWey(X0) 4 dd€qs, (x0))7 < edto0)Far o) +hlto o) g (x0) g1/ ().

Definition

A viscosity solution of (CMAF) is a continuous function which is both a
viscosity subsolution and a viscosity supersolution.
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Basic facts

e Assume u is C1?-smooth. It is a viscosity subsolution iff it is ws-psh
and a classical subsolution (similar result for supersolution).
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Parabolic scalar equations

Basic facts

e Assume u is C1?-smooth. It is a viscosity subsolution iff it is ws-psh
and a classical subsolution (similar result for supersolution).

@ If uy, up are viscosity subsolutions, then so is max(us, up).

@ If (uqy)aca is a loc. unif. bdd above family of subsolutions, then

¢ := (sup{ua, a € A})" is a subsolution.
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e Assume u is C1?-smooth. It is a viscosity subsolution iff it is ws-psh
and a classical subsolution (similar result for supersolution).

@ If uy, up are viscosity subsolutions, then so is max(us, up).

@ If (uqy)aca is a loc. unif. bdd above family of subsolutions, then
¢ := (sup{ua, a € A})" is a subsolution.

e If uis a subsolution of (CMAF),,, where p1 := et dV, then it is also
a subsolution of (CMAF), for all 0 < v < p.
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Basic facts

e Assume u is C1?-smooth. It is a viscosity subsolution iff it is ws-psh
and a classical subsolution (similar result for supersolution).

@ If uy, up are viscosity subsolutions, then so is max(us, up).

@ If (uqy)aca is a loc. unif. bdd above family of subsolutions, then
¢ := (sup{ua, a € A})" is a subsolution.

e If uis a subsolution of (CMAF),,, where p = et dV, then it is also
a subsolution of (CMAF), for all 0 < v < p.

@ u is a subsolution of (CMAF)g iff x — us(x) is we-psh Vt > 0.
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The key result here is the following maximum principle:
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The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+-16)

Assume u is a subsolution to (CMAF) and
v is a supersolution to (CMAF).
Then ug < vg = u; < v; for all t > 0.

— implies uniqueness of solutions.
— the key to the existence of solutions.
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The canonical twisted Kahler-Einstein current

Let X be an abundant minimal model with canonical singularities:
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@ Fix ha a positive hermitian metric of A with curvature form wa.
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Kx is a semi-ample Q-line bundle, K =Kodaira dimension of X, and
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@ Fix hy a positive hermitian metric of A with curvature form wy.
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The canonical twisted Kahler-Einstein current

Let X be an with canonical singularities:

Kx is a semi-ample Q-line bundle, K =Kodaira dimension of X, and
@ f: X — Xcn = litaka fibration, A ample Q-line bdle s.t. Kx = f*A.
o Generic fiber X, = f~1(y) is a Q-Calabi-Yau variety.
@ Fix hy a positive hermitian metric of A with curvature form wy.

e Fix 7 local (multivalued) non-vanishing hol. section of Kx, ha = f*ha

@ and v(hy) = cn% = globally well defined volume form on X.
ha
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The canonical twisted Kahler-Einstein current

Let X be an with canonical singularities:

Kx is a semi-ample Q-line bundle, K =Kodaira dimension of X, and
@ f: X — Xcn = litaka fibration, A ample Q-line bdle s.t. Kx = f*A.
o Generic fiber X, = f~1(y) is a Q-Calabi-Yau variety.
@ Fix hy a positive hermitian metric of A with curvature form wy.
. ~

)

Fix 1 local (multivalued) non-vanishing hol. section of Kx, ha = f*hp

and v(hp) = cn% = globally well defined volume form on X.
ha

The measure f,v(ha) has density in L' w.r.t to wf.
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The canonical twisted Kahler-Einstein current

Theorem (EGZ11, EGZ16)

There exists a unique continuous wa-psh function @can on Xcapn S.t.

(wa + dd“pcan)™ = e?<f.(v(ha)).
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There exists a unique continuous wa-psh function @can on Xcapn S.t.

(wa + dd“pcan)™ = e?<f.(v(ha)).

@ The current wean = wa + ddpcan is independent of hy.
@ It is smooth in X5 \ critical values of f.

o It satisfies Ric(wean) = —Wean + wwp in X5 \ critical values.

@ Result due to Song-Tian [ST07,5T12] when X is smooth.
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The canonical twisted Kahler-Einstein current

Theorem (EGZ11, EGZ16)

There exists a unique continuous wa-psh function @can on Xcapn S.t.

(wa + dd“pcan)™ = e?<f.(v(ha)).

@ The current wean = wa + ddpcan is independent of hy.
@ It is smooth in X5 \ critical values of f.

o It satisfies Ric(wean) = —Wean + wwp in X5 \ critical values.

@ Result due to Song-Tian [ST07,5T12] when X is smooth.

@ Weil-Petersson metric <> variation of cplx structure of CY fibers.
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The canonical twisted Kahler-Einstein current

The current Teyn = f*wean is an important birational invariant s.t.
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The canonical twisted Kahler-Einstein current

The current Teyn = f*wean is an important birational invariant s.t.

TK',

can

AWl = evenfy(hy).

Here wsp = wg + dd€ p=fiberwise family of Ricci flat KE metrics

wsF|x, = unique Ricci flat metric in {wo}lxy [EGZ09]

Conjecture (EGZ16)

The function p is smooth in a Zariski open set.

@ OK when X is smooth [Yau78] or when dim¢ X = 3.
@ [Choilb 7] : the function p is wo-psh in all variables (i.e. wsg > 0)
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The normalized Kahler-Ricci flow

The normalized Kahler-Ricci flow on X can be written as

(Cdt + ddCQOt)n

o—(n—r)t efr e v(ha)-
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The normalized Kahler-Ricci flow on X can be written as

(Cdt + ddCQOt)n

o—(n—r)t efr e v(ha)-

Particular case of (CMAF) considered above with T = +00, h =0 and
o e¥dV = r*v(ha) if m: X — X =desingularization of X;

@ wr=e twyg+ (1—et)f*wa so m*wy is "regular”;

@ normalization s.t. the volume of LHS cvto 1 as t — +ox.
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Convergence of the Normalized Kahler-Ricci flow

The normalized Kahler-Ricci flow

The normalized Kahler-Ricci flow on X can be written as

(Cdt + ddCQOt)n
e—(n—kK)t

= egbt—i_gotv(hA).

Particular case of (CMAF) considered above with T = +00, h =0 and
o e¥dV = r*v(ha) if m: X — X =desingularization of X;
@ wr=e twyg+ (1—et)f*wa so m*wy is "regular”;
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Convergence of the Normalized Kahler-Ricci flow

The normalized Kahler-Ricci flow

The normalized Kahler-Ricci flow on X can be written as

(Cdt + ddCQOt)n

o—(n—r)t efr e v(ha)-

Particular case of (CMAF) considered above with T = +00, h =0 and
o e¥dV = r*v(ha) if m: X — X =desingularization of X;
@ wr=e twyg+ (1—et)f*wa so m*wy is "regular”;

@ normalization s.t. the volume of LHS cvto 1 as t — +ox.

Theorem (EGZ16)

If p smooth on a Zariski open set then ; cv to Yoo = Qcan© f.

Result due to Song-Tian [ST12] when X is smooth.
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|dea of the proof

e Construct a subsolution u(t, x) of the flow such that

< |
Poo < t—ll—rpoo u(t, x).
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> i .
P2 fim V(e

@ The comparison principle insures @, = lim;_ 1 ©(t, x).

@ OK for subsolution if p is wg-psh; extra work otherwise.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 21 / 26



|dea of the proof

e Construct a subsolution u(t, x) of the flow such that

< |
Poo < t—ll—rpoo u(t, x).

@ Would like to construct a supersolution v(t, x) such that

> i .
P2 fim V(e

@ The comparison principle insures @, = lim;_ 1 ©(t, x).
@ OK for subsolution if p is wg-psh; extra work otherwise.

@ More involved to provide an accurate supersolution.
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Constructing rough sub/supersolutions

Easy uniform bound from above : v(t,x) := C >> 1 is a supersolution.
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Constructing rough sub/supersolutions

Easy uniform bound from above : v(t,x) := C >> 1 is a supersolution.

@ Indeed v(0,x) = C > g if C > supy ¢o and
o (wr+ddv)"=3", Cle—(n=it(1 — e_t)ff*wi\ A wg_j
< Cre(n=r)teBy(hy) < Cre=(MR)tglitvey(hy)

if C > B.

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98,EGZ08, Demailly-Palil0)

Assume
(wt + dd )" = FrdVx

with Fy uniformly in LY then v is uniformly bounded.

Vincent Guedj (IUF & IMT) KRF on minimal models May 5, 2016 22 /26



Construction of a fine subsolution

Consider

u(t,x) = (1 — e HDpoo(x) + e Ip(x) — Ce T+ h(t)
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where h+ b = klog(1 — e™*t), h(0) = 0. Then
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Construction of a fine subsolution

Consider
u(t,x) = (1 — e HDpoo(x) + e Ip(x) — Ce T+ h(t)
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Consider
u(t,x) = (1 — e Hpoo(x) + e Ip(x) — Ce T+ h(t)

where h+ b = klog(1 — e~ *t), h(0) = 0. Then

@ x — u(t,x) is we-psh if p is wp-psh
o u(x)=p(x)—C<oif C>>1
@ Ui + U = Yoo + h + h hence

(we + ddu;)" > Cre ("R (1 — e H)FTE A wizh = Cre (nrteletuey (h,)

Thus u subsolution and lower bound with exp. speed:

—C'(t+1)e”" + e "p(x) < (¢r — Poo)(x).
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Convergence of the Normalized Kahler-Ricci flow

Constructing a fine supersolution

The construction of an efficient supersolution is harder :

o Need to control mixed terms (f*wa + dd v ) A wg;j

@ Use that ¢, and p are smooth in X, \ D;

@ Establish a comparison principle for Kahler manifolds with boundary
e Construct a supersolution in X \ V.(D) and conclude.

More technical details in our paper.
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The end
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