Convergence of the Kähler-Ricci flow on minimal models Joint work with P.Eyssidieux and A.Zeriahi

Vincent Guedj

Institut Universitaire de France & Institut de Mathématiques de Toulouse

MSRI, May 5, 2016

		▲□▶▲圖▶▲콜▶▲콜▶ 콜	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	1 / 26

Classifying compact Kähler manifolds

		《曰》《卽》《言》《言》 []]]]]	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

		▶ ▲ 토 ▶ – 토	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n.

		<□><□><□	▶ < E > E	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models		May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

		《曰》《圖》《言》《言》 []	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

 $dim_{\mathbb{C}}H^0(X,K_X^j)\sim j^\kappa.$

		《口》《聞》《意》《意》 [注]	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

$$\dim_{\mathbb{C}} H^0(X, K_X^j) \sim j^{\kappa}.$$

kod(X) is a birational invariant

		< □ > < @ > < 注 > < 注 > _ 注	うみで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

$$dim_{\mathbb{C}}H^0(X,K_X^j)\sim j^\kappa.$$

- kod(X) is a birational invariant
- Today always assume $0 \le kod(X) \le n$ ("negative Ricci curvature")

		▶ ▲ 문 ▶ 문	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

 $\dim_{\mathbb{C}} H^0(X, K_X^j) \sim j^{\kappa}.$

- kod(X) is a birational invariant
- Today always assume $0 \le kod(X) \le n$ ("negative Ricci curvature")
- Building blocks are Calabi-Yau varieties $(kod(X) = 0, mK_X = 0)$

		< □ ▶	▶ ∢ ≣ ▶	E	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models		May 5, 201	L6	2 / 26

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

 $\dim_{\mathbb{C}} H^0(X, K_X^j) \sim j^{\kappa}.$

- kod(X) is a birational invariant
- Today always assume $0 \le kod(X) \le n$ ("negative Ricci curvature")
- Building blocks are Calabi-Yau varieties (kod(X) = 0, mK_X = 0) and Varieties of general type (kod(X) = n, vol(K_X) > 0)

	•	□▶ ◀@▶ ◀돌▶ ◀돌▶ _ 몰	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	2 / 26
	•		

Classifying compact Kähler manifolds

Classify algebraic varieties by positivity properties of canonical bundle.

Definition

Let X be a projective algebraic variety of complex dimension n. The Kodaira dimension of X is $\kappa := kod(X) \in \{-\infty, 0, 1..., n\}$, s.t.

 $\dim_{\mathbb{C}} H^0(X, K_X^j) \sim j^{\kappa}.$

- kod(X) is a birational invariant
- Today always assume $0 \le kod(X) \le n$ ("negative Ricci curvature")
- Building blocks are Calabi-Yau varieties (kod(X) = 0, mK_X = 0) and Varieties of general type (kod(X) = n, vol(K_X) > 0)
- Our main focus is on the case 0 < kod(X) < n (vol. collapsing)

Vincent Guedj (IUF & IMT)

KRF on minimal models

5900

▲□▶ ▲□▶ ▲□▶ ▲□▶

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension $n \ge 1$.

		< □ ▶	<⊡>	< ≣	▶ ∢ ≣ ▶	2	$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models				May 5, 201	.6	3 / 26

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension $n \ge 1$. Fix ω_0 a Kähler form and consider the Kähler-Ricci flow

$$\begin{cases} \frac{\partial \omega}{\partial t} = -\operatorname{Ric}(\omega) \\ \omega_{|t=0} = \omega_0 \end{cases}$$

		<ロ> (四) (四) (三) (三) (三)	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	3 / 26

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension $n \ge 1$. Fix ω_0 a Kähler form and consider the Kähler-Ricci flow

$$\begin{cases} \frac{\partial \omega}{\partial t} = -\operatorname{Ric}(\omega) \\ \omega_{|t=0} = \omega_0 \end{cases}$$

This flow admits a unique solution $\omega = \omega(t, x) = \omega_t(x)$ on a maximal domain $[0, T_{max}[\times X, where$

$$T_{max} = \sup\{t > 0; \{\omega_0\} - tc_1(X) \text{ is Kähler }\}.$$

	•	(ㅁ) 《쿱》 《콜》 《필》 (필)	$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	3 / 26

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension $n \ge 1$. Fix ω_0 a Kähler form and consider the Kähler-Ricci flow

$$\begin{cases} \frac{\partial \omega}{\partial t} = -\operatorname{Ric}(\omega) \\ \omega_{|t=0} = \omega_0 \end{cases}$$

This flow admits a unique solution $\omega = \omega(t, x) = \omega_t(x)$ on a maximal domain $[0, T_{max}[\times X, where$

$$T_{max} = \sup\{t > 0; \{\omega_0\} - tc_1(X) \text{ is Kähler }\}.$$

• Thus $T_{max} = +\infty$ iff K_X is nef (smooth minimal model)

		▶ ★ 문 ▶ _ 문	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	3 / 26

Studying the Kähler-Ricci flow

Let X be a compact Kähler manifold of complex dimension $n \ge 1$. Fix ω_0 a Kähler form and consider the Kähler-Ricci flow

$$\begin{cases} \frac{\partial \omega}{\partial t} = -\operatorname{Ric}(\omega) \\ \omega_{|t=0} = \omega_0 \end{cases}$$

This flow admits a unique solution $\omega = \omega(t, x) = \omega_t(x)$ on a maximal domain $[0, T_{max}[\times X, where$

$$T_{max} = \sup\{t > 0; \{\omega_0\} - tc_1(X) \text{ is Kähler }\}.$$

- Thus $T_{max} = +\infty$ iff K_X is nef (smooth minimal model)
- Volume not collapsing if kod(X) = n (and kod(X) = 0).

		▲□▶ ▲圖▶ ▲圖▶ ▲圖	▶ (三)	596
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5,	2016	3 / 26

An ambitious program [Song-Tian]

A natural and difficult problem is to understand the asymptotic behavior of ω_t as $t \to T_{max}$. Ideally one would like to

		< □ ▶	< ₽ < ₹	▶ ∢≣ ▶	Ξ	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models			May 5, 201	6	4 / 26

An ambitious program [Song-Tian]

A natural and difficult problem is to understand the asymptotic behavior of ω_t as $t \to T_{max}$. Ideally one would like to

• show that (X, ω_t) converges to a midly singular Kähler variety (X_1, S_1) equipped with a singular Kähler current S_1 ;

	•		うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	4 / 26

An ambitious program [Song-Tian]

A natural and difficult problem is to understand the asymptotic behavior of ω_t as $t \to T_{max}$. Ideally one would like to

- show that (X, ω_t) converges to a midly singular Kähler variety (X_1, S_1) equipped with a singular Kähler current S_1 ;
- try and restart the KRF on X_1 with initial data S_1 ;

		▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	4 / 26

An ambitious program [Song-Tian]

A natural and difficult problem is to understand the asymptotic behavior of ω_t as $t \to T_{max}$. Ideally one would like to

- show that (X, ω_t) converges to a midly singular Kähler variety (X_1, S_1) equipped with a singular Kähler current S_1 ;
- try and restart the KRF on X_1 with initial data S_1 ;
- repeat finitely many times to reach a minimal model X_r ;

		▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필	$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	4 / 26

An ambitious program [Song-Tian]

A natural and difficult problem is to understand the asymptotic behavior of ω_t as $t \to T_{max}$. Ideally one would like to

- show that (X, ω_t) converges to a midly singular Kähler variety (X_1, S_1) equipped with a singular Kähler current S_1 ;
- try and restart the KRF on X_1 with initial data S_1 ;
- repeat finitely many times to reach a minimal model X_r ;
- study the long term behavior of the NKRF (K_{X_r} is *nef*),

$$\begin{cases} \frac{\partial \omega}{\partial t} = -\operatorname{Ric}(\omega) - \omega_{t} \\ \omega_{|t=0} = S_{r} \end{cases}$$

and show that (X_r, ω_t) converges to a canonical model (X_{can}, ω_{can}) .

Vincent Guedj (IUF & IMT)

KRF on minimal models

____ May 5, 2016 4 / 26

5900

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Known results

• Program achieved in dimension one, Hamilton [1986] & Chow [1991].

		▶ ▲ 토 ▶ – 토	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).

			$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.

			$\mathcal{O}\mathcal{Q}$
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them

		▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them
 - Degenerate initial data (Kähler current rather than a Kähler form).

			うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them
 - Degenerate initial data (Kähler current rather than a Kähler form). OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].

		(中) (문) (문) (문) (문)	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them
 - Degenerate initial data (Kähler current rather than a Kähler form). OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].
 - Define the KRF on mildly singular varieties.

		(····································	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them
 - Degenerate initial data (Kähler current rather than a Kähler form). *OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].*
 - Define the KRF on mildly singular varieties. *OK by works of ...[Song-Tian09], [EGZ14].*

			4) Q (4
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them
 - Degenerate initial data (Kähler current rather than a Kähler form). *OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].*
 - Define the KRF on mildly singular varieties. *OK by works of ...[Song-Tian09], [EGZ14].*
 - Construct canonical limits and prove convergence.

	•	<⊡>	< ₹	▶ ◀ Ē ▶	1	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models			May 5, 20	16	5 / 26

- Program achieved in dimension one, Hamilton [1986] & Chow [1991].
- More or less complete in dimension two (...Song-Weinkove [2013]).
- Program however largely open in dimension \geq 3.
- Many difficulties to overcome, among them
 - Degenerate initial data (Kähler current rather than a Kähler form). *OK by works of ...[Song-Tian09], [GZ13], [DiNezza-Lu14].*
 - Define the KRF on mildly singular varieties. *OK by works of ...[Song-Tian09], [EGZ14].*
 - Construct canonical limits and prove convergence. \longrightarrow today's lecture.

		▲□▶▲圖▶▲필▶▲필▶ _ 필	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 / 26

Known results

• Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]

		.▶ ▲ 토 ▶ _ 토	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	6 / 26

- Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]
- Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]

		▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖	D Q (P
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	6 / 26

- Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]
- Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]
- Cv on smooth minimal models of intermediate Kodaira dimension [Song-Tian07, Song-Tian12, Tosatti-Weinkove-Yang14, etc]

			$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	6 / 26

- Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]
- Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]
- Cv on smooth minimal models of intermediate Kodaira dimension [Song-Tian07, Song-Tian12, Tosatti-Weinkove-Yang14, etc]
- Cv on arbitrary minimal models of intermediate Kodaira dimension :

		▲□▶ ▲圖▶ ▲불▶ ▲불▶ _ 불	$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	6 / 26

Known results

- Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]
- Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]
- Cv on smooth minimal models of intermediate Kodaira dimension [Song-Tian07, Song-Tian12, Tosatti-Weinkove-Yang14, etc]
- Cv on arbitrary minimal models of intermediate Kodaira dimension :

Theorem (EGZ16)

Let X be a 3-dim. minimal model with canonical singularities. The NKRF continuously deforms any Kähler form ω_0 to a canonical current T_{can} .

		< □ ▶	<⊡>	< ₹	▶ ∢ ≣ ▶	1	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj(IUF & IMT)	KRF on minimal models				May 5, 20	16	6 / 26
Known results

- Cv on Q-Calabi-Yau varieties [Cao85, Song-Tian09, EGZ14]
- Cv on general type minimal models [Tsuji88, Tian-Zhang06, EGZ14]
- Cv on smooth minimal models of intermediate Kodaira dimension [Song-Tian07, Song-Tian12, Tosatti-Weinkove-Yang14, etc]
- Cv on arbitrary minimal models of intermediate Kodaira dimension :

Theorem (EGZ16)

Let X be a 3-dim. minimal model with canonical singularities. The NKRF continuously deforms any Kähler form ω_0 to a canonical current T_{can} .

Main ingredient=viscosity methods [EGZ16]

		(日) (四) (日) (日) (日) (日) (日) (日) (日) (日) (日) (日	うへつ
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	6 / 26

Mild singularities

• Singularities showing up in the Minimal Model Program

			·王→ · 王	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May	y 5, 2016	7 / 26

- Singularities showing up in the Minimal Model Program
- Sufficient for our purpose to deal with *canonical singularities*,

			うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	7 / 26

- Singularities showing up in the Minimal Model Program
- Sufficient for our purpose to deal with *canonical singularities*, i.e. X is Q-Gorenstein of finite index and for any resolution,

	•	다 (종) (종) (종) (종)	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	7 / 26

- Singularities showing up in the Minimal Model Program
- Sufficient for our purpose to deal with *canonical singularities*, i.e. X is Q-Gorenstein of finite index and for any resolution,

$$K_{ ilde{X}} = \pi^* K_X + \sum_i a_i E_i$$
 with $a_i \ge 0$

	•	□ ▶ ◀ @ ▶ ◀ 별 ▶ ◀ 별 ▶ _ 별	うへつ
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	7 / 26

Mild singularities

- Singularities showing up in the Minimal Model Program
- Sufficient for our purpose to deal with *canonical singularities*,
 i.e. X is Q-Gorenstein of finite index and for any resolution,

$$K_{ ilde{X}} = \pi^* K_X + \sum_i a_i E_i$$
 with $a_i \ge 0$

• Example : $\sum_{j=0}^{n} z_j^2 = 0 \iff$ the ordinary double point.

			≣ <>) << (>
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	7 / 26

- Singularities showing up in the Minimal Model Program
- Sufficient for our purpose to deal with *canonical singularities*,
 i.e. X is Q-Gorenstein of finite index and for any resolution,

$$K_{\tilde{X}} = \pi^* K_X + \sum_i a_i E_i$$
 with $a_i \ge 0$

- Example : $\sum_{j=0}^{n} z_j^2 = 0 \iff$ the ordinary double point.
- This is not a quotient singularity if $n \ge 3$.

		《曰》《卽》《言》《言》 []	うくで
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	7 / 26

Complex Monge-Ampère flows

Solving the normalized Kähler-Ricci flow is equivalent to solving

(CMAF) $(\omega_t + dd^c \varphi_t)^n = e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x),$

		(ㅁ) (큔) (흔) (흔) 흔	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	8 / 26

Complex Monge-Ampère flows

Solving the normalized Kähler-Ricci flow is equivalent to solving

- (CMAF) $(\omega_t + dd^c \varphi_t)^n = e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x),$
- $t \mapsto \omega_t(x)$ continuous family of semi-positive closed (1,1)-forms;

	٩	< 注 ▶ < 注 ▶	■
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	5 8 / 26

Complex Monge-Ampère flows

Solving the normalized Kähler-Ricci flow is equivalent to solving

(CMAF) $(\omega_t + dd^c \varphi_t)^n = e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x),$

- $t \mapsto \omega_t(x)$ continuous family of semi-positive closed (1, 1)-forms;
- $(t,x) \mapsto h(t,x)$ is continuous

	•	□ ▶ ◀륨 ▶ ◀ 홈 ▶ ◀ 홈 ▶ _ 홈	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	8 / 26

Complex Monge-Ampère flows

Solving the normalized Kähler-Ricci flow is equivalent to solving

(CMAF) $(\omega_t + dd^c \varphi_t)^n = e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x),$

- $t \mapsto \omega_t(x)$ continuous family of semi-positive closed (1, 1)-forms;
- $(t,x) \mapsto h(t,x)$ is continuous
- ψ is quasi-psh and continuous (i.e. e^{ψ} is continuous),

		《曰》《曰》《臣》《臣》 臣	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	8 / 26

Complex Monge-Ampère flows

Solving the normalized Kähler-Ricci flow is equivalent to solving

(CMAF)
$$(\omega_t + dd^c \varphi_t)^n = e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x),$$

- $t \mapsto \omega_t(x)$ continuous family of semi-positive closed (1, 1)-forms;
- $(t,x) \mapsto h(t,x)$ is continuous
- ψ is quasi-psh and continuous (i.e. e^{ψ} is continuous),

and $(t,x) \mapsto \varphi(t,x) = \varphi_t(x)$ is the unknown function.

	< 1	미 › 《큔 › 《코 › 《코 › _ 코	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	8 / 26

Degeneracies

We work on a smooth manifold \tilde{X} , obtained by desingularizing a singular model: if $\pi : \tilde{X} \to X$ denotes a resolution of singularities, then

			うくで
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	9 / 26

Degeneracies

We work on a smooth manifold \tilde{X} , obtained by desingularizing a singular model: if $\pi : \tilde{X} \to X$ denotes a resolution of singularities, then

• $\omega_t = \pi^* \theta_t$ are pull-backs of Kähler forms hence no longer Kähler;

	•	· · · · · · · · · · · · · · · · · · ·	うへつ
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	9 / 26

Degeneracies

We work on a smooth manifold \tilde{X} , obtained by desingularizing a singular model: if $\pi : \tilde{X} \to X$ denotes a resolution of singularities, then

- $\omega_t = \pi^* \theta_t$ are pull-backs of Kähler forms hence no longer Kähler;
- the RHS vanishes along the exceptional divisors, e.g.

			うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	9 / 26

Degeneracies

We work on a smooth manifold \tilde{X} , obtained by desingularizing a singular model: if $\pi : \tilde{X} \to X$ denotes a resolution of singularities, then

- $\omega_t = \pi^* \theta_t$ are pull-backs of Kähler forms hence no longer Kähler;
- the RHS vanishes along the exceptional divisors, e.g.

$$e^{\psi} = \prod_{j=1}^{N} |s_j|_h^2 \longleftrightarrow$$
 canonical singularities.

	•	다 (종) (종) (종) (종)	うへつ
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	9 / 26

Existence result

We always assume that ω_t is "regular", i.e.

		< □ ► < @ ►	▲ 문 ▶ ▲ 문 ▶ _ 명	
Vincent Guedj (IUF & IMT)	KRF on minimal models		May 5, 2016	10 / 26

Existence result

We always assume that ω_t is "regular", i.e.

• $\exists \theta$ semi-positive and big s.t. $\theta \leq \omega_t$ for all t;

		▲□▶ ▲圖▶ ★ 圖▶ ★ 圖▶ _ 圖	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	10 / 26

Existence result

We always assume that ω_t is "regular", i.e.

- $\exists \theta$ semi-positive and big s.t. $\theta \leq \omega_t$ for all t;
- $\exists \varepsilon \in \mathcal{C}^1 \text{ with } \varepsilon(0) = 0 \text{ s.t. } \omega_s(1 \varepsilon(t s)) \leq \omega_t.$

		< □ > < @ > < 注 > < 注 > < 注	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	10 / 26

Existence result

We always assume that ω_t is "regular", i.e.

- $\exists \theta$ semi-positive and big s.t. $\theta \leq \omega_t$ for all t;
- $\exists \varepsilon \in \mathcal{C}^1 \text{ with } \varepsilon(0) = 0 \text{ s.t. } \omega_s(1 \varepsilon(t s)) \leq \omega_t.$

Theorem (EGZ14)

If φ_0 is an arbitrary continuous ω_0 -psh function, there exists a unique viscosity solution $(t, x) \mapsto \varphi_t(x)$ of (CMAF) with initial value φ_0 .

			$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	10 / 26

Existence result

We always assume that ω_t is "regular", i.e.

- $\exists \theta$ semi-positive and big s.t. $\theta \leq \omega_t$ for all t;
- $\exists \varepsilon \in \mathcal{C}^1 \text{ with } \varepsilon(0) = 0 \text{ s.t. } \omega_s(1 \varepsilon(t s)) \leq \omega_t.$

Theorem (EGZ14)

If φ_0 is an arbitrary continuous ω_0 -psh function, there exists a unique viscosity solution $(t, x) \mapsto \varphi_t(x)$ of (CMAF) with initial value φ_0 . The function φ_t is the upper envelope of viscosity subsolutions. In particular $x \mapsto \varphi_t(x)$ is ω_t -plurisubharmonic for all $t \ge 0$.

		・ロ・・西・・声・・ 声・	
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	10 / 26

Existence result

We always assume that ω_t is "regular", i.e.

- $\exists \theta$ semi-positive and big s.t. $\theta \leq \omega_t$ for all t;
- $\exists \varepsilon \in \mathcal{C}^1 \text{ with } \varepsilon(0) = 0 \text{ s.t. } \omega_s(1 \varepsilon(t s)) \leq \omega_t.$

Theorem (EGZ14)

If φ_0 is an arbitrary continuous ω_0 -psh function, there exists a unique viscosity solution $(t, x) \mapsto \varphi_t(x)$ of (CMAF) with initial value φ_0 . The function φ_t is the upper envelope of viscosity subsolutions. In particular $x \mapsto \varphi_t(x)$ is ω_t -plurisubharmonic for all $t \ge 0$.

NB: need extension of this result to manifolds with boundary [EGZ16]

Vincent Guedj (IUF & IMT)

KRF on minimal models

May 5, 2016 10 / 26

590

▲□▶ ▲圖▶ ▲필▶ ▲필▶ - 필

Classical sub/super/solutions

Definition

A function $\varphi \in C^{1,2}$ is a classical subsolution of (CMAF) if for all $t \ge 0$ $x \mapsto \varphi_t(x)$ is ω_t -psh and

$$(\omega_t + dd^c \varphi_t)^n \ge e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

		<ロ> <同> <同> < 三> < 三> < 三> < 三	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	11 / 26

Classical sub/super/solutions

Definition

A function $\varphi \in C^{1,2}$ is a classical subsolution of (CMAF) if for all $t \ge 0$ $x \mapsto \varphi_t(x)$ is ω_t -psh and

$$(\omega_t + dd^c \varphi_t)^n \ge e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

A function $\varphi \in C^{1,2}$ is a classical supersolution of (CMAF) if

$$(\omega_t + dd^c \varphi_t)^n_+ \leq e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

		 < □ > < □	
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	11 / 26

Classical sub/super/solutions

Definition

A function $\varphi \in C^{1,2}$ is a classical subsolution of (CMAF) if for all $t \ge 0$ $x \mapsto \varphi_t(x)$ is ω_t -psh and

$$(\omega_t + dd^c \varphi_t)^n \ge e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

A function $\varphi \in C^{1,2}$ is a classical supersolution of (CMAF) if

$$(\omega_t + dd^c \varphi_t)^n_+ \le e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

Here $\theta_+(x) = \theta(x)$ if $\theta(x) \ge 0$ and $\theta_+(x) = 0$ otherwise.

		< □ >	▲国 ▶ ▲ 国 ▶ ▲ 国 ▶	E nac
Vincent Guedj (IUF & IMT)	KRF on minimal models		May 5, 2016	11 / 26

Classical sub/super/solutions

Definition

A function $\varphi \in C^{1,2}$ is a classical subsolution of (CMAF) if for all $t \ge 0$ $x \mapsto \varphi_t(x)$ is ω_t -psh and

$$(\omega_t + dd^c \varphi_t)^n \ge e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

A function $\varphi \in C^{1,2}$ is a classical supersolution of (CMAF) if

$$(\omega_t + dd^c \varphi_t)^n_+ \leq e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

A classical solution is both a subsolution and a supersolution.

Here $\theta_+(x) = \theta(x)$ if $\theta(x) \ge 0$ and $\theta_+(x) = 0$ otherwise.

		 < □ > < ⊡ > < Ξ > < Ξ > Ξ 	うへつ
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	12 / 26

Classical sub/super/solutions

Definition

A function $\varphi \in C^{1,2}$ is a classical subsolution of (CMAF) if for all $t \ge 0$ $x \mapsto \varphi_t(x)$ is ω_t -psh and

$$(\omega_t + dd^c \varphi_t)^n \ge e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

A function $\varphi \in C^{1,2}$ is a classical supersolution of (CMAF) if

$$(\omega_t + dd^c \varphi_t)^n_+ \leq e^{\dot{\varphi}_t + \varphi_t + h(t,x)} e^{\psi(x)} dV(x)$$

A classical solution is both a subsolution and a supersolution.

Here $\theta_+(x) = \theta(x)$ if $\theta(x) \ge 0$ and $\theta_+(x) = 0$ otherwise.

PROBLEM: classical solutions usually do not exist !

Vincent Guedj (IUF & IMT)

KRF on minimal models

May 5, 2016 12 / 26

◆□▶ ◆□▶ ◆ ■▶ ◆ ■▶ ● ■ ● ���

Viscosity subsolutions

Definition

Given $u: X_T := (0, T) \times \tilde{X} \to \mathbb{R}$ an u.s.c. bounded function and $(t_0, x_0) \in X_T$, q is a differential test from above for u at (t_0, x_0) if

		▲□▶ ▲圖▶ ▲필▶ ▲필▶ _ 필	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	13 / 26

Viscosity subsolutions

Definition

Given $u: X_T := (0, T) \times \tilde{X} \to \mathbb{R}$ an u.s.c. bounded function and $(t_0, x_0) \in X_T$, q is a differential test from above for u at (t_0, x_0) if

• $q \in \mathcal{C}^{1,2}$ in a small neighborhood V_0 of (t_0, x_0) ;

		< □ > < @ > < 注 > < 注 > 注	$\mathcal{D}\mathcal{Q}\mathcal{C}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	13 / 26

Viscosity subsolutions

Definition

Given $u: X_T := (0, T) \times \tilde{X} \to \mathbb{R}$ an u.s.c. bounded function and $(t_0, x_0) \in X_T$, q is a differential test from above for u at (t_0, x_0) if

- $q \in C^{1,2}$ in a small neighborhood V_0 of (t_0, x_0) ;
- $u \leq q$ in V_0 and $u(t_0, x_0) = q(t_0, x_0)$.

	•	(ㅁ) 《遼) 《혼) 《혼) [\mathcal{D}
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	13 / 26

Viscosity subsolutions

Definition

Given $u: X_T := (0, T) \times \tilde{X} \to \mathbb{R}$ an u.s.c. bounded function and $(t_0, x_0) \in X_T$, q is a differential test from above for u at (t_0, x_0) if

- $q \in C^{1,2}$ in a small neighborhood V_0 of (t_0, x_0) ;
- $u \leq q$ in V_0 and $u(t_0, x_0) = q(t_0, x_0)$.

Definition

An u.s.c. bounded function $u : X_T \to \mathbb{R}$ is a viscosity subsolution of *(CMAF)* if for all $(t_0, x_0) \in X_T$ and all differential tests q from above,

 $(\omega_{t_0}(x_0) + dd^c q_{t_0}(x_0))^n \geq e^{\dot{q}_{t_0}(x_0) + q_{t_0}(x_0) + h(t_0, x_0)} e^{\psi(x_0)} dV(x_0).$

Vincent Guedj (IUF & IMT)

KRF on minimal models

May 5, 2016 13 / 26

5900

▲□ → ▲ 臣 → ▲ 臣 → □ 臣

Viscosity super/solutions

Definition

A l.s.c. bounded function $v : X_T \to \mathbb{R}$ is a viscosity supersolution of (CMAF) if for all $(t_0, x_0) \in X_T$ and all differential tests q from below,

 $(\omega_{t_0}(x_0) + dd^c q_{t_0}(x_0))_+^n \leq e^{\dot{q}_{t_0}(x_0) + q_{t_0}(x_0) + h(t_0, x_0)} e^{\psi(x_0)} dV(x_0).$

		《口》《聞》《臣》《臣》 臣	うくで
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	14 / 26

Viscosity super/solutions

Definition

A l.s.c. bounded function $v : X_T \to \mathbb{R}$ is a viscosity supersolution of (CMAF) if for all $(t_0, x_0) \in X_T$ and all differential tests q from below,

 $(\omega_{t_0}(x_0) + dd^c q_{t_0}(x_0))_+^n \leq e^{\dot{q}_{t_0}(x_0) + q_{t_0}(x_0) + h(t_0, x_0)} e^{\psi(x_0)} dV(x_0).$

Definition

A viscosity solution of (CMAF) is a continuous function which is both a viscosity subsolution and a viscosity supersolution.

		《曰》《卽》《言》《言》 []]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	14 / 26

Basic facts

• Assume u is $C^{1,2}$ -smooth. It is a viscosity subsolution iff it is ω_t -psh and a classical subsolution (similar result for supersolution).

			596
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	15 / 26

Basic facts

- Assume u is $C^{1,2}$ -smooth. It is a viscosity subsolution iff it is ω_t -psh and a classical subsolution (similar result for supersolution).
- If u_1, u_2 are viscosity subsolutions, then so is $max(u_1, u_2)$.

		▲□▶ < @▶ < @▶ < @▶ < @	うへで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	15 / 26

Basic facts

- Assume u is $C^{1,2}$ -smooth. It is a viscosity subsolution iff it is ω_t -psh and a classical subsolution (similar result for supersolution).
- If u_1, u_2 are viscosity subsolutions, then so is $max(u_1, u_2)$.
- If $(u_{\alpha})_{\alpha \in A}$ is a loc. unif. bdd above family of subsolutions, then

 $\varphi := (\sup\{u_{\alpha}, \ \alpha \in A\})^*$ is a subsolution.

Vincent Guedj (IUF & IMT)

KRF on minimal models

May 5, 2016 15 / 26

590

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣
Basic facts

- Assume u is $C^{1,2}$ -smooth. It is a viscosity subsolution iff it is ω_t -psh and a classical subsolution (similar result for supersolution).
- If u_1, u_2 are viscosity subsolutions, then so is $max(u_1, u_2)$.
- If $(u_{\alpha})_{\alpha \in A}$ is a loc. unif. bdd above family of subsolutions, then

 $\varphi := (\sup\{u_{\alpha}, \ \alpha \in A\})^*$ is a subsolution.

• If u is a subsolution of $(CMAF)_{\mu}$, where $\mu := e^{h+\psi}dV$, then it is also a subsolution of $(CMAF)_{\nu}$ for all $0 \le \nu \le \mu$.

	•	▲ 분 ▶ ▲ 분 ▶	E ≁) Q (¥
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	15 / 26

Basic facts

- Assume u is $C^{1,2}$ -smooth. It is a viscosity subsolution iff it is ω_t -psh and a classical subsolution (similar result for supersolution).
- If u_1, u_2 are viscosity subsolutions, then so is $max(u_1, u_2)$.
- If $(u_{\alpha})_{\alpha \in A}$ is a loc. unif. bdd above family of subsolutions, then

$$\varphi := (\sup\{u_{\alpha}, \ \alpha \in A\})^*$$
 is a subsolution.

- If *u* is a subsolution of $(CMAF)_{\mu}$, where $\mu := e^{h+\psi}dV$, then it is also a subsolution of $(CMAF)_{\nu}$ for all $0 \le \nu \le \mu$.
- *u* is a subsolution of $(CMAF)_0$ iff $x \mapsto u_t(x)$ is ω_t -psh $\forall t \ge 0$.

	•	미 🕨 🖉 🕨 🗸 들 🕨 🦷 들	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	15 / 26

The comparison principle

The key result here is the following maximum principle:

		< □ ▶ < @ ▶ < E ▶ < E ▶ < 	500
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	16 / 26

The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+16)

Assume u is a subsolution to (CMAF) and

	•	· · · · · · · · · · · · · · · · · · ·	
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	16 / 26

The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+16)

Assume u is a subsolution to (CMAF) and v is a supersolution to (CMAF).

	4		500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	16 / 26

The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+16)

Assume u is a subsolution to (CMAF) and v is a supersolution to (CMAF). Then $u_0 \le v_0 \Longrightarrow u_t \le v_t$ for all t > 0.

		《曰》《國》《臣》《臣》 臣	$\mathcal{D}\mathcal{Q}\mathcal{C}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	16 / 26

The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+16)

Assume u is a subsolution to (CMAF) and v is a supersolution to (CMAF). Then $u_0 \le v_0 \Longrightarrow u_t \le v_t$ for all t > 0.

 \rightarrow implies uniqueness of solutions.

		《 ㅁ 》 《 碑 》 《 편 》 《 편 》 _ 편	$\mathcal{D}\mathcal{Q}\mathcal{C}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	16 / 26

The comparison principle

The key result here is the following maximum principle:

Theorem (EGZ14+16)

Assume u is a subsolution to (CMAF) and v is a supersolution to (CMAF). Then $u_0 \le v_0 \Longrightarrow u_t \le v_t$ for all t > 0.

 \rightarrow implies uniqueness of solutions.

 \rightarrow the key to the existence of solutions.

		<⊡>	< ≣	▶ ▲ ≣ ▶	1	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models		I	May 5, 20	L 6	16 / 26

The canonical twisted Kähler-Einstein current

Let X be an abundant minimal model with canonical singularities:

		< □ ▶	< ₽ < ₹	▶ ∢ ≣ ▶	Ξ.	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models			May 5, 2016		17 / 26

The canonical twisted Kähler-Einstein current

			$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	17 / 26

The canonical twisted Kähler-Einstein current

Let X be an abundant minimal model with canonical singularities: K_X is a semi-ample Q-line bundle, $\kappa =$ Kodaira dimension of X, and

• $f: X \to X_{can} =$ litaka fibration, A ample \mathbb{Q} -line bdle s.t. $K_X = f^*A$.

		◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	17 / 26

The canonical twisted Kähler-Einstein current

- $f: X \to X_{can} =$ litaka fibration, A ample \mathbb{Q} -line bdle s.t. $K_X = f^*A$.
- Generic fiber $X_y = f^{-1}(y)$ is a Q-Calabi-Yau variety.

		다 사 비 사 관 사 관 사 관 사 관 관 관 관 관 관 관 관 관 관 관	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	17 / 26

The canonical twisted Kähler-Einstein current

- $f: X \to X_{can} =$ litaka fibration, A ample \mathbb{Q} -line bdle s.t. $K_X = f^*A$.
- Generic fiber $X_y = f^{-1}(y)$ is a Q-Calabi-Yau variety.
- Fix h_A a positive hermitian metric of A with curvature form ω_A .

			500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	17 / 26

The canonical twisted Kähler-Einstein current

- $f: X \to X_{can} =$ litaka fibration, A ample \mathbb{Q} -line bdle s.t. $K_X = f^*A$.
- Generic fiber $X_y = f^{-1}(y)$ is a Q-Calabi-Yau variety.
- Fix h_A a positive hermitian metric of A with curvature form ω_A .
- Fix η local (multivalued) non-vanishing hol. section of K_X , $\tilde{h}_A = f^* h_A$

	•		- AC
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	17 / 26

The canonical twisted Kähler-Einstein current

Let X be an abundant minimal model with canonical singularities: K_X is a semi-ample Q-line bundle, $\kappa =$ Kodaira dimension of X, and

- $f: X \to X_{can} =$ litaka fibration, A ample \mathbb{Q} -line bdle s.t. $K_X = f^*A$.
- Generic fiber $X_y = f^{-1}(y)$ is a Q-Calabi-Yau variety.
- Fix h_A a positive hermitian metric of A with curvature form ω_A .
- Fix η local (multivalued) non-vanishing hol. section of K_X , $\tilde{h}_A = f^* h_A$
- and $v(h_A) = c_n \frac{\eta \wedge \overline{\eta}}{||\eta||_{\tilde{h}_A}^2} =$ globally well defined volume form on X.

Vincent Guedj	(IUF & IMT)
---------------	-------------

KRF on minimal models

E May 5, 2016 17 / 26

590

▲圖▶ ▲厘▶ ▲厘▶

The canonical twisted Kähler-Einstein current

Let X be an abundant minimal model with canonical singularities: K_X is a semi-ample Q-line bundle, $\kappa =$ Kodaira dimension of X, and

- $f: X \to X_{can} =$ litaka fibration, A ample \mathbb{Q} -line bdle s.t. $K_X = f^*A$.
- Generic fiber $X_{y} = f^{-1}(y)$ is a Q-Calabi-Yau variety.
- Fix h_A a positive hermitian metric of A with curvature form ω_A .
- Fix η local (multivalued) non-vanishing hol. section of K_X , $\tilde{h}_A = f^* h_A$
- and $v(h_A) = c_n \frac{\eta \wedge \overline{\eta}}{||\eta||_{\widetilde{h}_A}^2} =$ globally well defined volume form on X.

Lemma

The measure $f_*v(h_A)$ has density in $L^{1+\varepsilon}$ w.r.t to ω_A^{κ} .

Vincent Guedj (IUF & IMT)

KRF on minimal models

3 May 5, 2016 17 / 26

5900

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

$$(\omega_A + dd^c \varphi_{can})^{\kappa} = e^{\varphi_{can}} f_*(v(h_A)).$$

		▲□▶▲@▶▲필▶▲필▶ _ 필	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	18 / 26

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

There exists a unique continuous ω_A -psh function φ_{can} on X_{can} s.t.

$$(\omega_A + dd^c \varphi_{can})^{\kappa} = e^{\varphi_{can}} f_*(v(h_A)).$$

• The current $\omega_{can} = \omega_A + dd^c \varphi_{can}$ is independent of h_A .

			E <>) < (>
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	18 / 26

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

$$(\omega_A + dd^c \varphi_{can})^{\kappa} = e^{\varphi_{can}} f_*(v(h_A)).$$

- The current $\omega_{can} = \omega_A + dd^c \varphi_{can}$ is independent of h_A .
- It is smooth in $X_{can}^{reg} \setminus \text{critical values of } f$.

			500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	18 / 26

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

$$(\omega_A + dd^c \varphi_{can})^{\kappa} = e^{\varphi_{can}} f_*(v(h_A)).$$

- The current $\omega_{can} = \omega_A + dd^c \varphi_{can}$ is independent of h_A .
- It is smooth in $X_{can}^{reg} \setminus critical$ values of f.
- It satisfies $\operatorname{Ric}(\omega_{\operatorname{can}}) = -\omega_{\operatorname{can}} + \omega_{\operatorname{WP}}$ in $X_{\operatorname{can}}^{\operatorname{reg}} \setminus \operatorname{critical}$ values.

		《 ㅁ ▷ 《 卽 ▷ 《 岂 ▷ 《 岂 ▷ 《 岂 ▷ 길	$\checkmark) Q (\lor$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	18 / 26

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

$$(\omega_A + dd^c \varphi_{can})^{\kappa} = e^{\varphi_{can}} f_*(v(h_A)).$$

- The current $\omega_{can} = \omega_A + dd^c \varphi_{can}$ is independent of h_A .
- It is smooth in $X_{can}^{reg} \setminus critical$ values of f.
- It satisfies $\operatorname{Ric}(\omega_{\operatorname{can}}) = -\omega_{\operatorname{can}} + \omega_{\operatorname{WP}}$ in $X_{\operatorname{can}}^{\operatorname{reg}} \setminus \operatorname{critical}$ values.
- Result due to Song-Tian [ST07,ST12] when X is smooth.

		《 ㅁ ▷ 《 쿱 ▷ 《 壴 ▷ 《 壴 ▷ 亘	$\mathcal{D}\mathcal{A}\mathcal{C}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	18 / 26

The canonical twisted Kähler-Einstein current

Theorem (EGZ11, EGZ16)

$$(\omega_A + dd^c \varphi_{can})^{\kappa} = e^{\varphi_{can}} f_*(v(h_A)).$$

- The current $\omega_{can} = \omega_A + dd^c \varphi_{can}$ is independent of h_A .
- It is smooth in $X_{can}^{reg} \setminus critical$ values of f.
- It satisfies $\operatorname{Ric}(\omega_{\operatorname{can}}) = -\omega_{\operatorname{can}} + \omega_{\operatorname{WP}}$ in $X_{\operatorname{can}}^{\operatorname{reg}} \setminus \operatorname{critical}$ values.
- Result due to Song-Tian [ST07,ST12] when X is smooth.
- Weil-Petersson metric \leftrightarrow variation of cplx structure of CY fibers.

		▲□▶ < @▶ < @▶ < @▶ < @▶	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	18 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

	•		うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	19 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

Lemma (ST12)

$T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = e^{\varphi_{can} \circ f} v(h_{\mathcal{A}}).$

		▲□▶▲@▶▲≣▶▲≣▶ ≣	$\mathcal{O} \mathcal{Q} \mathcal{O}$
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	19 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

Lemma (ST12)

$$T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = e^{\varphi_{can} \circ f} v(h_{\mathcal{A}}).$$

Here $\omega_{SF} = \omega_0 + dd^c \rho$ =fiberwise family of Ricci flat KE metrics

	•		500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	19 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

Lemma (ST12)

$$T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = e^{\varphi_{can} \circ f} v(h_{A}).$$

Here $\omega_{SF} = \omega_0 + dd^c \rho$ =fiberwise family of Ricci flat KE metrics

 $\omega_{SF|X_y} = unique Ricci flat metric in {\omega_0}_{|X_y} [EGZ09]$

	•	미 🛛 🖉 🕨 🧸 토 🕨 🤅 🗄 🖓	5000
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	19 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

Lemma (ST12)

$$T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = e^{\varphi_{can} \circ f} v(h_A).$$

Here $\omega_{SF} = \omega_0 + dd^c \rho$ =fiberwise family of Ricci flat KE metrics

 $\omega_{SF|X_y}$ = unique Ricci flat metric in $\{\omega_0\}_{|X_y}$ [EGZ09]

Conjecture (EGZ16)

The function ρ is smooth in a Zariski open set.

		《曰》《圖》《注》《注》 注	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	19 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

Lemma (ST12)

$$T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = e^{\varphi_{can} \circ f} v(h_A).$$

Here $\omega_{SF} = \omega_0 + dd^c \rho$ =fiberwise family of Ricci flat KE metrics

 $\omega_{SF|X_y}$ = unique Ricci flat metric in $\{\omega_0\}_{|X_y}$ [EGZ09]

Conjecture (EGZ16)

The function ρ is smooth in a Zariski open set.

• OK when X is smooth [Yau78] or when dim_{$\mathbb{C}} X = 3$.</sub>

		< □ ▶	<⊡ > <	≡×	∢ ≣ ▶	Ξ.	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj(IUF & IMT)	KRF on minimal models			Ma	ay 5, 2016		19 / 26

The canonical twisted Kähler-Einstein current

The current $T_{can} = f^* \omega_{can}$ is an important birational invariant s.t.

Lemma (ST12)

$$T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = e^{\varphi_{can} \circ f} v(h_A).$$

Here $\omega_{SF} = \omega_0 + dd^c \rho$ =fiberwise family of Ricci flat KE metrics

 $\omega_{SF|X_{v}} =$ unique Ricci flat metric in $\{\omega_{0}\}_{|X_{v}}$ [EGZ09]

Conjecture (EGZ16)

The function ρ is smooth in a Zariski open set.

- OK when X is smooth [Yau78] or when dim_{\mathbb{C}} X = 3.
- [Choi15 ?] : the function ρ is ω_0 -psh in all variables (i.e. $\omega_{SF} \ge 0$)

Vincent Guedj (IUF & IMT)

KRF on minimal models

May 5, 2016 19 / 26

5900

▲御▶ ▲臣▶ ▲臣

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

		▲□▶▲圖▶▲圖▶▲圖▶ 圖	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	20 / 26

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

Particular case of (CMAF) considered above with $T=+\infty$, $h\equiv 0$ and

	•	ㅁ ▶ ◀ @ ▶ ◀ 별 ▶ ◀ 별 ▶ 별	500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	20 / 26

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

Particular case of (CMAF) considered above with $T=+\infty$, $h\equiv 0$ and

•
$$e^{\psi}dV = \pi^*v(h_A)$$
 if $\pi: \tilde{X} \to X =$ desingularization of X;

		(· · · · · · · · · · · · · · · · · · ·	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	20 / 26

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

Particular case of (CMAF) considered above with $T = +\infty$, $h \equiv 0$ and

- $e^{\psi}dV = \pi^*v(h_A)$ if $\pi: \tilde{X} \to X$ =desingularization of X;
- $\omega_t = e^{-t}\omega_0 + (1 e^{-t})f^*\omega_A$ so $\pi^*\omega_t$ is "regular";

) Q (
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	20 / 26

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

Particular case of (CMAF) considered above with $T = +\infty$, $h \equiv 0$ and

• $e^{\psi}dV = \pi^*v(h_A)$ if $\pi: \tilde{X} \to X$ =desingularization of X;

•
$$\omega_t = e^{-t}\omega_0 + (1 - e^{-t})f^*\omega_A$$
 so $\pi^*\omega_t$ is "regular";

• normalization s.t. the volume of LHS cv to 1 as $t \to +\infty$.

	•	[ㅁ ▷ 《 @ ▷ 《 볼 ▷ 《 볼 ▷ _ 볼	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	20 / 26

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

Particular case of (CMAF) considered above with $T = +\infty$, $h \equiv 0$ and

• $e^{\psi}dV = \pi^*v(h_A)$ if $\pi: \tilde{X} \to X$ =desingularization of X;

•
$$\omega_t = e^{-t}\omega_0 + (1 - e^{-t})f^*\omega_A$$
 so $\pi^*\omega_t$ is "regular";

• normalization s.t. the volume of LHS cv to 1 as $t \to +\infty$.

Theorem (EGZ16)

If ρ smooth on a Zariski open set then φ_t cv to $\varphi_{\infty} := \varphi_{can} \circ f$.

 Vincent Guedj (IUF & IMT)
 KRF on minimal models
 May 5, 2016
 20 / 26

The normalized Kähler-Ricci flow

The normalized Kähler-Ricci flow on X can be written as

$$\frac{(\omega_t + dd^c \varphi_t)^n}{C_n^{\kappa} e^{-(n-\kappa)t}} = e^{\dot{\varphi}_t + \varphi_t} v(h_A).$$

Particular case of (CMAF) considered above with $T = +\infty$, $h \equiv 0$ and

- $e^{\psi}dV = \pi^*v(h_A)$ if $\pi: \tilde{X} \to X$ =desingularization of X;
- $\omega_t = e^{-t}\omega_0 + (1 e^{-t})f^*\omega_A$ so $\pi^*\omega_t$ is "regular";
- normalization s.t. the volume of LHS cv to 1 as $t \to +\infty$.

Theorem (EGZ16)

If ρ smooth on a Zariski open set then φ_t cv to $\varphi_\infty := \varphi_{can} \circ f$.

Result due to Song-Tian [ST12] when X is smooth.

Vincent Guedj (IUF & IMT)

KRF on minimal models

Э May 5, 2016 20 / 26

590

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶
Idea of the proof

• Construct a subsolution u(t, x) of the flow such that

 $\varphi_{\infty} \leq \lim_{t \to +\infty} u(t, x).$

	•	□ › < @ › < 분 › < 분 ›	うみつ
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	21 / 26

Idea of the proof

• Construct a subsolution u(t, x) of the flow such that

$$\varphi_{\infty} \leq \lim_{t \to +\infty} u(t, x).$$

• Would like to construct a supersolution v(t, x) such that

$$\varphi_{\infty} \geq \lim_{t \to +\infty} v(t,x).$$

	•	· · · · · · · · · · · · · · · · · · ·	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	21 / 26

Idea of the proof

• Construct a subsolution u(t, x) of the flow such that

$$\varphi_{\infty} \leq \lim_{t \to +\infty} u(t, x).$$

• Would like to construct a supersolution v(t, x) such that

$$\varphi_{\infty} \geq \lim_{t \to +\infty} v(t,x).$$

• The comparison principle insures $\varphi_{\infty} = \lim_{t \to +\infty} \varphi(t, x)$.

			500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	21 / 26

Idea of the proof

• Construct a subsolution u(t, x) of the flow such that

$$\varphi_{\infty} \leq \lim_{t \to +\infty} u(t, x).$$

• Would like to construct a supersolution v(t, x) such that

$$\varphi_{\infty} \geq \lim_{t \to +\infty} v(t,x).$$

- The comparison principle insures $\varphi_{\infty} = \lim_{t \to +\infty} \varphi(t, x)$.
- OK for subsolution if ρ is ω_0 -psh; extra work otherwise.

		 < < < 	500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	21 / 26

Idea of the proof

• Construct a subsolution u(t, x) of the flow such that

$$\varphi_{\infty} \leq \lim_{t \to +\infty} u(t, x).$$

• Would like to construct a supersolution v(t, x) such that

$$\varphi_{\infty} \geq \lim_{t \to +\infty} v(t, x).$$

- The comparison principle insures $\varphi_{\infty} = \lim_{t \to +\infty} \varphi(t, x)$.
- OK for subsolution if ρ is ω_0 -psh; extra work otherwise.
- More involved to provide an accurate supersolution.

			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	21 / 26

# Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

		<⊡ >	(* 注)	> ∢ ≣ >	1	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models		Ν	May 5, 2016		22 / 26

## Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

• Indeed  $v(0,x) = C \ge \varphi_0$  if  $C \ge \sup_X \varphi_0$  and

		▲□▶▲圖▶▲≣▶▲≣▶ ≣ めへの
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016 22 / 26

## Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

- Indeed  $v(0,x) = C \ge \varphi_0$  if  $C \ge \sup_X \varphi_0$  and
- $(\omega_t + dd^c v)^n = \sum_{j=0}^{\kappa} C_n^j e^{-(n-j)t} (1 e^{-t})^j f^* \omega_A^j \wedge \omega_0^{n-j}$

			*) Q (*
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	22 / 26

## Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

- Indeed  $v(0,x) = C \ge \varphi_0$  if  $C \ge \sup_X \varphi_0$  and
- $(\omega_t + dd^c v)^n = \sum_{j=0}^{\kappa} C_n^j e^{-(n-j)t} (1 e^{-t})^j f^* \omega_A^j \wedge \omega_0^{n-j}$  $\leq C_n^{\kappa} e^{-(n-\kappa)t} e^B v(h_A) \leq C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{v}_t + v_t} v(h_A)$

		▲□▶▲@▶▲필▶▲필▶ _ 필	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	22 / 26

## Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

• Indeed  $v(0,x) = C \ge \varphi_0$  if  $C \ge \sup_X \varphi_0$  and

• 
$$(\omega_t + dd^c v)^n = \sum_{j=0}^{\kappa} C_n^j e^{-(n-j)t} (1-e^{-t})^j f^* \omega_A^j \wedge \omega_0^{n-j}$$
  
 $\leq C_n^{\kappa} e^{-(n-\kappa)t} e^B v(h_A) \leq C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{v}_t + v_t} v(h_A)$   
if  $C \geq B$ .

	٩	□ ▶ ◀륨 ▶ ◀ 분 ▶ ▲ 분 ▶   분	うくで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	22 / 26

# Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

• Indeed  $v(0,x) = C \ge \varphi_0$  if  $C \ge \sup_X \varphi_0$  and

• 
$$(\omega_t + dd^c v)^n = \sum_{j=0}^{\kappa} C_n^j e^{-(n-j)t} (1-e^{-t})^j f^* \omega_A^j \wedge \omega_0^{n-j}$$
  
 $\leq C_n^{\kappa} e^{-(n-\kappa)t} e^B v(h_A) \leq C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{v}_t + v_t} v(h_A)$   
if  $C \geq B$ .

Showing a uniform bound from below is more involved and relies on

	•	미 🕨 🗸 🗇 🕨 🔨 🖻 🕨	E nac
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	22 / 26

# Constructing rough sub/supersolutions

Easy uniform bound from above :  $v(t,x) :\equiv C >> 1$  is a supersolution.

• Indeed  $v(0,x) = C \ge \varphi_0$  if  $C \ge \sup_X \varphi_0$  and

• 
$$(\omega_t + dd^c v)^n = \sum_{j=0}^{\kappa} C_n^j e^{-(n-j)t} (1-e^{-t})^j f^* \omega_A^j \wedge \omega_0^{n-j}$$
  
 $\leq C_n^{\kappa} e^{-(n-\kappa)t} e^B v(h_A) \leq C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{v}_t + v_t} v(h_A)$   
if  $C \geq B$ .

Showing a uniform bound from below is more involved and relies on

Theorem (Kolodziej98, EGZ08, Demailly-Pali10)

Assume

$$V_t^{-1}(\omega_t + dd^c \psi_t)^n = F_t dV_X$$

with  $F_t$  uniformly in  $L^{1+\varepsilon}$  then  $\psi_t$  is uniformly bounded.

		· · · · · · · · · · · · · · · · · · ·	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	22 / 26

Construction of a fine subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

		• □ ▶ • @ ▶	▲ 토 ► ▲ 토 ► _ 표	500
Vincent Guedj (IUF & IMT)	KRF on minimal models		May 5, 2016	23 / 26

Construction of a fine subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

		◆□▶ ◆舂▶ ◆逹▶ ◆逹▶ ─ 莒	500
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	23 / 26

Construction of a fine subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

•  $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh

	•	ㅁ ▶ ◀ @ ▶ ◀ 별 ▶ ◀ 별 ▶ _ 월	5000
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	23 / 26

Construction of a fine subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

- $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh
- $u_0(x) = \rho(x) C \le \varphi_0$  if C >> 1

		《曰》《聞》《言》《言》 [] 言	うみで
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	23 / 26

Construction of a fine subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

•  $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh

• 
$$u_0(x) = \rho(x) - C \le \varphi_0$$
 if  $C >> 1$ 

•  $\dot{u}_t + u_t = \varphi_{\infty} + h' + h$  hence

		《 ㅁ ▷ 《 @ ▷ 《 분 ▷ 《 분 ▷   분	$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	23 / 26

Construction of a fine subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

- $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh
- $u_0(x) = \rho(x) C \le \varphi_0$  if C >> 1
- $\dot{u}_t + u_t = \varphi_{\infty} + h' + h$  hence

$$(\omega_t + dd^c u_t)^n \geq C_n^{\kappa} e^{-(n-\kappa)t} (1-e^{-t})^{\kappa} T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa}$$

		< ₹ < ₹ < ₹ < ₹ < ₹	
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	23 / 26

Construction of a subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

- $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh
- $u_0(x) = \rho(x) C \le \varphi_0$  if C >> 1
- $\dot{u}_t + u_t = \varphi_{\infty} + h' + h$  hence

$$(\omega_t + dd^c u_t)^n \geq C_n^{\kappa} e^{-(n-\kappa)t} (1 - e^{-t})^{\kappa} T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{u}_t + u_t} v(h_A)$$

			≣ ≁) Q (≯
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	24 / 26

Construction of a subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

•  $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh

• 
$$u_0(x) = \rho(x) - C \le \varphi_0$$
 if  $C >> 1$ 

• 
$$\dot{u}_t + u_t = \varphi_{\infty} + h' + h$$
 hence

$$(\omega_t + dd^c u_t)^n \geq C_n^{\kappa} e^{-(n-\kappa)t} (1 - e^{-t})^{\kappa} T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{u}_t + u_t} v(h_A)$$

Thus *u* subsolution and lower bound with exp. speed:

		▶ ▲ 臣 ▶ ▲ 臣 ▶	
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	24 / 26

Construction of a subsolution

Consider

$$u(t,x) = (1 - e^{-t})\varphi_{\infty}(x) + e^{-t}\rho(x) - Ce^{-t} + h(t)$$

where  $h + h' = \kappa \log(1 - e^{-t})$ , h(0) = 0. Then

•  $x \mapsto u(t, x)$  is  $\omega_t$ -psh if  $\rho$  is  $\omega_0$ -psh

• 
$$u_0(x) = \rho(x) - C \le \varphi_0$$
 if  $C >> 1$ 

• 
$$\dot{u}_t + u_t = \varphi_{\infty} + h' + h$$
 hence

$$(\omega_t + dd^c u_t)^n \geq C_n^{\kappa} e^{-(n-\kappa)t} (1 - e^{-t})^{\kappa} T_{can}^{\kappa} \wedge \omega_{SF}^{n-\kappa} = C_n^{\kappa} e^{-(n-\kappa)t} e^{\dot{u}_t + u_t} v(h_A)$$

Thus *u* subsolution and lower bound with exp. speed:

$$-C'(t+1)e^{-t}+e^{-t}\rho(x)\leq (\varphi_t-\varphi_\infty)(x).$$

Vincent Guedj (IUF & IMT)

KRF on minimal models

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ▶ ● ○ へ ○ May 5, 2016 24 / 26

# Constructing a fine supersolution

			<b>1 1 1 1</b>
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	25 / 26

Constructing a fine supersolution

The construction of an efficient supersolution is harder :

• Need to control mixed terms  $(f^*\omega_A + dd^c \varphi_\infty)^j \wedge \omega_{SF}^{n-j}$ 

		▲□▶▲@▶▲≧▶▲≧▶ _ 릴	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	25 / 26

Constructing a fine supersolution

- Need to control mixed terms  $(f^*\omega_A + dd^c \varphi_\infty)^j \wedge \omega_{SF}^{n-j}$
- Use that  $\varphi_{\infty}$  and  $\rho$  are smooth in  $X_{can} \setminus D$ ;

			500
Vincent Guedj(IUF & IMT)	KRF on minimal models	May 5, 2016	25 / 26

### Constructing a fine supersolution

- Need to control mixed terms  $(f^*\omega_A + dd^c arphi_\infty)^j \wedge \omega_{SF}^{n-j}$
- Use that  $\varphi_{\infty}$  and  $\rho$  are smooth in  $X_{can} \setminus D$ ;
- Establish a comparison principle for Kähler manifolds with boundary

			$\mathcal{O}\mathcal{Q}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	25 / 26

## Constructing a fine supersolution

- Need to control mixed terms  $(f^*\omega_A + dd^c \varphi_\infty)^j \wedge \omega_{SF}^{n-j}$
- Use that  $\varphi_{\infty}$  and  $\rho$  are smooth in  $X_{can} \setminus D$ ;
- Establish a comparison principle for Kähler manifolds with boundary
- Construct a supersolution in  $X \setminus V_{\varepsilon}(D)$  and conclude.

		《曰》《聞》《臣》《臣》 臣	$\mathcal{O}\mathcal{Q}\mathcal{O}$
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	25 / 26

## Constructing a fine supersolution

The construction of an efficient supersolution is harder :

- Need to control mixed terms  $(f^*\omega_A + dd^c \varphi_\infty)^j \wedge \omega_{SF}^{n-j}$
- Use that  $\varphi_{\infty}$  and  $\rho$  are smooth in  $X_{can} \setminus D$ ;
- Establish a comparison principle for Kähler manifolds with boundary
- Construct a supersolution in  $X \setminus V_{\varepsilon}(D)$  and conclude.

More technical details in our paper.

		《曰》《卽》《言》《言》 []	500
Vincent Guedj (IUF & IMT)	KRF on minimal models	May 5, 2016	25 / 26

## The end

- [ST12] J.Song, G.Tian: Canonical measures and Kähler-Ricci flow.
   J. Amer. Math. Soc. 25 (2012), no. 2, 303-353.
- [Choi15] Y.-J.Choi: Semi-positivity of fiberwise Ricci-flat metrics on Calabi-Yau fibrations. Preprint arXiv:1508.00323
- [EGZ14] Weak solutions to degenerate complex Monge-Ampère flows II. Preprint arXiv:1407.2504
- [EGZ16] Convergence of weak Kähler-Ricci Flows on minimal models of positive Kodaira dimension. Preprint arXiv:1604.07001.

		< □ ▶	< ₽ >	< ≣	▶ < ≣ >	1	うみで
Vincent Guedj (IUF & IMT)	KRF on minimal models				May 5, 2016	j	26 / 26