Convergence of Ricci Flows with Bounded Scalar Curvature

Richard Bamler

May 5, 2016

We will start with an elementary problem in Ricci flow. Consider a smooth family of metrics $g(t)$ with $t \in [0, T)$ on a compact manifold M^n . The Ricci flow equation reads $\partial_t g(t) = -2Ric_{q(t)}$ and we are guaranteed solutions to this equation on some maximal time interval $[0, T)$ after which we may reach a singularity. Assume $T < \infty$. The result from Hamilton '82 is that at a maximal time *T* we have max_{*M*} | $Rm|(\cdot,t) \rightarrow \infty$ as *t* → *T*. A more refined result by Sesum '03 shows that the norm of the Ricci tensor ∣*Ric*∣ becomes unbounded on $M \times [0, T)$. This yields a natural question/conjecture?

Conjecture 1 *Does the scalar curvature R become unbounded on* $M \times [0, T)$?

A remark is that this conjecture is true when $n \in \{2,3\}$ where $n = 3$ is proved by the Hamilton-Ivey pinching, and the result is also true for Kähler manifolds. We also have

$$
\partial_t R = \Delta R + 2|Ric|^2 \geq \Delta R
$$

hence by the maximum principle we have that *R* is bounded from below, so $R > -C$. It'd be interesting as well to consider the contrapositive of this conjecture, or rather

- 1. Assuming that $R < C$ on $M \times [0, T)$, what is the behavior of the metric $g(t)$ as $t \to T$?
- 2. Assume that $R(\cdot, t) < \frac{C}{T-t}$ like in a type 1 singularity, and that $diam_t M < C\sqrt{T-t}$, what is the behavior of the rescaled metric $\frac{g(t)}{T-t}$ as $t \to T$?

Question 2 here is interesting here since Perelman proved that if *M* is a Fano manifold an *g* is a Kähler Ricci flow, then both the inequalities listed are true. This yields another conjecture

Conjecture 2 (Hamilton-Tian) *If* $g(t)$ *is a Kähler-Ricci flow and M is Fano, then* $(T-t)^{-1}g(t)$ *subconverges to a gradient shrinking soliton away from codimension* ≥ 4 *as* $t \rightarrow T$ *.*

We will discuss for now the case that $n = 4$. Last year there was a theorem proved in this direction:

Theorem 1 (Bamler-Zhang '15, Simon '15) *If* $n = 4$ *and* $R < C$ *on* $M \times [0, T)$ *, then*

- *1.* $\int_M |Rm|^2(\cdot, t) < C$ *for all* $t \in [0, T)$ *,*
- 2. $\int_M |Ric|^{4-\epsilon} (\cdot, t) < C_{\epsilon}$ *for all* $t \in [0, T)$ *and* $\epsilon > 0$ *,*
- *3.* $\int_0^T \int_M |Ric|^4 < \infty$,
- *4.* $(M, g(t))$ *in the limit as* $t \to T$ *approaches a* C^0 *orbifold* $(M_T, g(T))$ *, and*
- *5. the Ricci flow can be continued from* $(M_T, g(T))$ *, hence we obtain a smooth orbifold structure.*

We can gain some intuition behind this theorem by picking an example. Recall the Kummer construction where we have a surface

$$
K3^4 = (\mathbb{T}^4/\mathbb{Z}_2) \#_{\mathbb{RP}^3} 16EH^4.
$$

Cross-sections around the corners of $\mathbb{T}^4/\mathbb{Z}_2$ are diffeomorphic to \mathbb{RP}^3 , so we can glue in Eguchi-Hanson metrics along these copies of RP³ . We therefore obtain an almost Ricci flat metric on *K*3⁴. In this gluing process, we can choose the size of the the Eguchi-Hanson metrics arbitrarily small. So our gluing process generates a family of almost Ricci flat metrics that degenerate to the original orbifold $\mathbb{T}^4/\mathbb{Z}_2$.

A third question naturall arises: Can such a degeneration occur in a Ricci flow? In higher dimensions we will look at a Ricci flow $g(t)$ on $M \times [0, T)$ where $T \times \infty$.

We now move to higher dimensions $n \geq 4$. In the setting of Question 1, we know the following:

Theorem 2 (Bamler-Zhang '15) If we have an upper bound C on our scalar curvature $R < C$ on $M \times$ $[0, T)$ *then* $d_T = \lim_{t \to T} d_t$ *exists and is a pseudometric.*

Theorem 3 (Bamler '15) *If* $R < C$ *on* $M \times [0, T)$ *then there exists an open subset* $\mathcal{R} \subset M$ *such that*

- *1.* $g(t) \rightarrow g(T)$ *in a* C^{∞} *manner as* $t \rightarrow T$ *, when restricted to* \mathcal{R} *.*
- *2. given the relation* $x ∼ y$ *if and only if* $d(x, y) = 0$ *, we have that*

$$
(M_T \coloneqq M / \sim, d_T) \cong (\mathcal{R}, g(T))
$$

where the overbar indicates the completion of the submanifold R*.*

3. dim $M(T \setminus \mathcal{R}) \leq n-4$, where dim M *denotes the Minkowski dimension.*

We have an additional theorem in the setting of Question 2;

Theorem 4 (Bamler '15) If $R(\cdot,t) < \frac{C}{T-t}$ and diam_t $M < C\sqrt{T-t}$ then for any $t_i \to T$ there is a subse*quence such that*

$$
\left(M, \frac{g(t_i)}{T - t_i}\right) \longrightarrow_{i \to \infty} (X, d_X)
$$

and $X = \mathcal{R} \cup \mathcal{S}$ *such that*

- 1. $d_X|_{\mathcal{R}}$ *is isometric to the length metric of a smooth Riemannian manifold* g_{∞} *.*
- 2. $\frac{g(t_i)}{T-t_i} \to g_\infty$ on R in a C^∞ manner as $i \to \infty$.
- *3. There exists* $f \in C^{\infty}(\mathcal{R})$ *such that* $Ric_{g_{\infty}} + \nabla^2 f = \frac{1}{2}g_{\infty}$ *on* \mathcal{R} *.*
- *4.* dim_{*M*}, d _{*x*} (\mathcal{S}) ≤ *n* − 4*.*

There is a corollary to this theorem, which is

Corollary 1 *The Hamilton-Tian conjecture is true.*

A remark about this is that there is progress in the complex geometric setting currently being addressed by Tian-Zhang and Chen-Wang. Further results include a compactness theorem (Bamler '15). Particularly, if $(M_i \times [-2,0], g_i(t))$ are Ricci flows with $R_{g_i(t)} < C$ on $M_i \times [-2,0]$, and $\mu[g_i(-2),\frac{1}{2}] > -C$. We also have that there exists a subsequence so that

$$
(M_i, g_i(0)) \rightarrow (X, d_X, \mathcal{R}, g_{\infty})
$$

just as before with dim_M $(X \setminus \mathcal{R}) \leq n - 4$.

Definition 1 (Curvature Radius) *Let* (*M,g*) *be a Riemannian manifold. We define the curvature radius to be the quantity*

$$
r_{Rm}(x) := \sup\{r > 0 : |Rm| < \frac{1}{r^2} \text{ on } B(x,r)\}.
$$

There is additionally a curvature bound result (Bamler '15): Let $(M \times [-2,0], g(t))$ be a Ricci flow with

- 1. *R* < *A* on *M* × [−2*,* 0], and
- 2. $\mu(g(-2),\frac{1}{2}) > -A$.

then with $0 < r < 1$ we have

$$
\int_{B(x,0,r)} |Rm|^{2-\epsilon}(\cdot,0) \leq \int_{B(x,0,r)} r_{Rm}^{-4+2\epsilon}(\cdot,0) < C(A,\epsilon)r^{n-4+2\epsilon}.
$$

There are some ingredients that are used in setting up this proof: Suppose for the remaining discussion that *R* < 1 on *M* × [−2*,* 0], and that we have $\mu(g(-2), \frac{1}{2})$ > −*A*, where *A* is a lower entropy bound.

A result by Perelman, Zhang, and Chen-Wang shows that for all $(x, t) \in M \times [-1, 0]$ with $0 < r < 1$ we have that

$$
k_1(A)r^n \leq |B(x,t,r)|_t \leq k_2(A)r^n.
$$

A result by Bamler-Zhang shows that if $t_1, t_2 \in [-2, 0]$ and $d_{t_1}(x, y) < D$ then

$$
|d_{t_1}(x,y)-d_{t_2}(x,y)| \leq C(D)\sqrt{|t_1-t_2|}.
$$

Another result by Bamler-Zhang is that if $-1 \le s < t \le 0$ with $x, y \in M$ we have lower and upper Gaussian bounds:

$$
\frac{1}{C(t-s)^{n/2}}\exp\left(\frac{Cd_s^2(x,y)}{t-s}\right) < k(x,t,y,s) < \frac{C}{(t-s)^{n/2}}\exp\left(\frac{d_s^2(x,y)}{C(t-s)}\right).
$$

where *k* is a heat kernel of the heat equation $\partial_t - \Delta = 0$ coupled with Ricci flow. Lastly there is a backwards pseudo-locality bound (Bamler-Zhang) where if $0 < r < 1$ and $(x, t) \in M \times [-1, 0]$ with the conditions that $|Rm|(\cdot,t) < \frac{1}{r^2}$ on $B(x,t,r)$ then this implies that $|Rm| < \frac{2}{r^2}$ on $B(x,t,\frac{r}{2}) \times [t - \epsilon r^2, t]$.

This yields a corollary:

Corollary 2 *If* $|Rm|(\cdot, t) < \frac{1}{r^2}$ *on* $B(x, t, r)$ *then* $|Ric|(x, t) < \frac{C}{r^1}$ *.*

We also provide a quick idea of the proof of the compactness theorem mentioned earlier. Suppose a priori that

$$
\int_{B(x,t,r)} r_{RM}^{-3.1}(\cdot,t) \le Er^{n-3.1}
$$

We can deduce that under this a priori assumption, every blowup of a Ricci flow has the form (X, d_X, \mathcal{R}, g) , as in the previously mentioned compactness theorem. Moreover, this blowup is Ricci flat on its regular subset. Using the results of Cheeger-Colding-Naber, it is then possible to deduce L^p bounds on r_{RM}^{-1} , which improve the a priori assumptions.