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We will survey some results done with ancient and eternal solutions of geometric flows. They occur as
blow-up limits around singularities. Heuristically, ancient and eternal solutions are those that are defined
on (−∞, T ) with T ≤ +∞. We will discuss blow up limits around singularities, classification results, and
methods of constructing new ancient solutions, as well as the Ricci flow, mean curvature flow.

Definition 1 A solution u(⋅, t) is called ancient if it exists for t ∈ (−∞, T ) for T < ∞, and they occur as
blow up limits of Type I singularities. We say that u(⋅, t) is eternal for all t ∈ (−∞,∞) and they occur as
blow up limits of Type II singularities.

Some examples of these include

• Solitons (sphere, cylinders, translating solitons).

• A result of Hamilton shows the derivation of the di↵erentiable Harnack inequalities for the Ricci and
mean curvature flows, where Rm > 0 for the Ricci flow, and A > 0 for MCF. He used them to show that
all eternal solutions with Rm > 0 (in RF), and A > 0 (in MCF) that attain the spacetime maximum of
R (in RF) and H (in MCF) must be steady solitons (RF), or translating solitons (MCF).

Definition 2 A Type I ancient solution for Ricci flows are those that satisfy

lim sup
t→−∞ �t� supMt

�Rm� < ∞.

Otherwise they are Type II solutions.

For mean curvature flow, suppose we have an immersion F ∶ Mn � Rn+1 with @F
@t
= −H⌫ subject to

F (⋅,0) = F
0

. For n = 1 we have that Ft is an embedded, closed, convex ancient solution to the CSF, in which
case we have that @

@t
X = −⌫ which is equivalent to @

@t
 = ss + 3. Some examples of the 1-dimensional

cases include contracti
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1. p = 1

2(−t) which correspond to contracting circles,

2. Angenant ovals where for � > 0 we have

p(✓, t) = �� 1

1 − e−2�t − sin2(✓ + r)�
which correspond to grim reaper flows. When we take the limit as t → −∞ we will see two parallel
lines.

Theorem 1 (Daskalopolous-Hamilton-Sesum) The only closed ancient embedded convex solutions to
the CSF are either circles or Angenent ovals.

It’s natural now to ask what happens in higher dimensions. What about n ≥ 2.
Conjecture 1 (Angenent) There exist ancient, convex, closed solutions to the mean curvature flow that
as t → −∞ which after rescaling look more and more like cylinders and with a blow down limit at the tips
look like translating solitons (bowls).

Papers by White, and Haslhofer-Hershkowitz rigorously proves the existence of Angenent ovals. Our goal
is to prove that the only ancient, noncollapsed, closed solutions to the mean curvature flow are either the
spheres or Angenent solutions. We define noncollapsing here:

Definition 3 Let ↵ > 0. A mean convex mean curvature flow {Mt}t>0 is called ↵-noncollapsed if there
exist for every p exterior and interior balls of radius at least ↵

H(p) tangent to the hypersurface at p.
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A nice result by Haslhofer-Kleiner shows that if you have ↵-noncollapsed and ancient solutions, you also
have convexity. There are more results from White and Haslhofer-Hershkowitz. Additionally we have

lim
t→−∞

1��t� diam(Mt) = ∞
and

lim sup
t→−∞

��t� sup
Mt

�A� = ∞
both of which hold for the Angenent solution and the second holds for Type II solutions. Results by Huisken-
Sinestrari, and Haslhofer-Hershkowitz follows as such: Let {Mt}t>0 be an ancient, noncollapsed, closed, mean
curvature flow. Then if one of the following holds:

1. lim supt→−∞ �t�−1�2diam(Mt) <∞, or

2. lim supt→−∞ �t�1�2 supMt
�A� <∞ for Type I solutions

then Mt is just a family of contracting spheres. From now on we will refer to ancient ovals as closed,
noncollapsed, and ancient solutions to the mean curvature flow. We will consider ancient ovals that are
O(1)×O(n) invariant hypersurfaces in Rn+1 where �y� = u(x, t) for y ∈ Rn and x ∈ R that satisfy the equation

@

@t
u = uxx

1 + u2

x

− 1

u
.

By using the rescaling ⌧ = − log(−t) we get that

@

@t
u = uyy

1 + u2

y

− y

2
uy − n − 1

u
+ u
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whose solutions are u(y, ⌧) =�2(n − 1)-cylinders. Work by X. J. Wang show that dialations

{X̃ ∈ Rn+1 � (−t)1�2X̃ ∈Mt}
that sweep out the whole space converge as t→ −∞ to either

1. a sphere, or
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2. a cylinder Sn−1 ×R of radius
�
2(n − 1).

Theorem 2 (Angenent, Daskalopolous, Sesum) Let {Mt} be an ancient oval as above. Then either{Mt} is a family of contracting spheres, or u(y, ⌧) has the following asymptotics:

1. Parabolic region: u(y, ⌧) =�2(n − 1)�1 + y2−2
4⌧
� +O(�⌧ �−1) with �y� ≤M ,

2. Intermediate region: z = y��⌧ � where u(z, ⌧) = u(z��⌧ �, ⌧) and u(z, ⌧)→√2 − z2 as ⌧ → −∞, or

3. Tip region: There’s a rescaling which results in a translating soliton.

Corollary 1 As a result of the asymptotics, we have that

�t�−1�2diam(Mt) ≈ �
8 log(t)��t�H

max

(Mt) ≈ �
log(t)
2

as t→ −∞.

Conjecture 2 The ancient ovals with O(1)×O(n) symmetry are uniquely determined by their asymptotics.

Recall the @
@t
gij = −Rgij . For n = 2 we have that the ancient flow is just the Ricci flow. We consider closed,

ancient solutions on Sn. For n ≥ 3 Yamabe flow is conformal so we have g = v 4
n−2 gSn and we have that

@

@t
v

n+2
n−2 = �Snv − c(n)v.

We now list some examples of ancient solutions:

1. Spheres,

2. Work by King-Brendle show that g = gRn
a(t)+2b(t)�x�2+a(t)�x�4 . An example of this are the Barenblat solutions

of Yamabe shrinkers gk = gRn
k2+�x�2 .
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Both of the following are Type I solutions, so two questions naturally arise. Can we classify Type I solutions?
And, are there any Type II ancient solutions?

Theorem 3 (Daskalopolous, del-Pino, Sesum) We construct a class of ancient closed solutions to Yam-
abe flow on Sn which (after normalization) converge as t→ −∞ to a tower of n spheres.

For n = 2 we have the following image of the ancient solutions:

This is proved roughly by a fixed-point theorem for arguments of the form u(x, t) = w(x − ⇠(t)) + w(x +
⇠(t))+ (x, t). We have that for every � ≥ 1 where � = 1 corresponds to the Barenblat solution, there exists a
Yamabe shrinker (a traveling wave of speed �) where v�(x, t) = V (x−�⌧) = 1−C�e

−��y +O(e−��y) as y →∞.
A theorem by Daskalopolous, del-Pino, King, Sesum details the wave properties of these asymptotics.
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