
A Gap Theorem and some Uniform Estimates for Ricci Flows on

Homogeneous Spaces

Miles Simon

May 6th, 2016

Everything discussed today is joint work with R. Lafuente and C. Böhm. We will be discussing homoge-
neous spaces (Mn, g) that have no boundary ∂Mn = ∅, they are complete and connected. For them to be
homogeneous spaces we have that for all points p, q ∈ M there is an isometry f ∶ M → M where f(p) = q.
We are also interested in studying local homogeneous spaces, which are related to homogeneous spaces. The
latter differ from the former in the sense that they may be incomplete manifolds, and we now only have local
isometries. That is for every p, q ∈ M there exists a map f ∶ Bε(p) → Bε(q) where each ball is compactly
contained in M and f is an isometry with f(p) = q. We end up having quantities that are globally constant
in both cases. For instance the Riemannian curvature tensor satisfies ∣Riem∣g ∶ M → R is constant. We
additionally have that ∣∇Riem∣g ∶M → R is constant as well, but we have to be careful since there in general
do not exist bounds on how large this quantity can be. For instance there exist examples where ∣Riem∣g = 1
but ∣∇Riem∣g = N where we can take N as large as we like.

It’s clear that homogeneous implies locally homogeneous, but the converse of this not true : It’s natural to
ask, if we have a locally homogeneous space (M,g), does there exist a map f ∶ (Ω(⊆M), g) → (N,h) where
(N,h) is globally homogeneous sucht that f is an isometry? The answer is no. In work done by O. Kowalski
and F. Lastaria and F. Tricerri examples are constructed for which no such f exists. We do have however
that if (M,g) is locally homogeneous, then it is also analytic. That is we have a covering of M by coordinate
charts ϕα ∶ Uα → ϕα(Uα) where ϕα(Uα) ⊆ Rn and ϕα ○ϕ−1β is analytic, and the metric g with respect to this
atlas is analytic.

Theorem 1 (Böhm, Lafuente, Simon) If (Mn, g(t))t∈[a,b] is a homogeneous Ricci flow, then there exists
a constant 0 < c(n) <∞ such that

∣Riem∣g(b) ≤ c(n)max{ 1

b − a,R(g(b)) −R(g(a))} .

Corollary 1 Let (Mn, g(t)) be a maximal homogeneous solution on some interval I, then we have that

1. If I = [0, T ) with T < ∞ and R(g(0)) = 1, we have ∣Riem∣g(t)(T − t) ∈ [ 1
8
, c(n)] for all t ∈ [δ(n)T,T )

where 0 < δ(n) < 1.

2. If I = [0,∞) and R(g(0)) = −1 we obtain a Type III solution, where ∣Riem∣g(t)t ∈ [0, c(n)) for all t ∈ I.

3. If I = (−∞,−1] and R(g(−1)) = 1 we have that ∣Riem∣g(t)∣t∣ ∈ [c(n),C(n)] for some 0 < C(n) <∞.

Remarks
C. Böhm proved results of the type given in the first and second case of the above corollary, but there the
constants were dependent on the initial manifold (M,g0) (not just n).
The volume does not appear in the statements above : for example a non-collapsing type assumption is not
necessary.

We now proceed to the main ideas of the proof:

The main ingredient of the proof of Theorem 1 is the following Theorem, which has nothing to do with
Ricci flow :
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Theorem 2 (Böhm, Lafuente, Simon) For n ∈ N there exists c(n) > 0 such that if (Mn, g) is a homo-
geneous manifold then ∣Riem∣g ≤ c(n)∣Ric∣g. This is equivalent to : there exists ε(n) ∈ (0,1) such that the
Weyl curvature satisfies ∣Weyl∣g ≤ (1 − ε(n))∣Riem∣g.

The main ingredients of the proof of this Theorem are :

(a) A result of A. Spiro : In a locally homogeneous space we have that ∣Ric∣g = 0 implies that ∣Riem∣g = 0.
In the homogeneous case this was proved by D. Alekseevski and N. Kimelfeld.

(b) A convergence result for Riemannian spaces similar to one proved by J. Cheeger and M. Anderson.

To prove Theorem 2, assume that the result is false. That is, suppose there exists a sequence of homogeneous
spaces (Mn

i , gi) such that

∣Riem∣gi ≥ i∣Ric∣gi
for all i ∈ N. Observe then that ∣Ric∣gi ≤ 1

i
∣Riem∣gi . Scale so that ∣Riem∣gi = 1 and ∣Ric∣gi ≤ 1

i
. Let pi ∈Mi

and consider the exponential map Exppi ∶ TpiMi → Mi where we identify TpiMi ≈ Rn and Exppi(0) = pi.
If we restrict to the ball of radius π, that is we consider Exppi ∣δBπ(0) ∶→ M , this map is then (in view of

the Rauch comparison theorems) an immersion. We then see that we have a local cover (δBπ(0), g̃i) where

g̃i = f∗i gi satisfies 1
c(n)δ ≤ g̃i ≤ c(n)δ on δBα(n)(0) and Inj(g̃i)(0) = π, where the second last fact follows from

∣R̃iem∣ = 1 and the Jacobi equations. In particular, V ol(g̃iBα(n)(0)) ≥ v0(n) > 0 and hence the sequence

(g̃iBπ(0) = δBπ(0), g̃i) is non-collapsing.
Using the fact that Exppi ∣δBπ(0) ∶

δBπ(0)→M is an immersion we see the following : For all p̃, q̃ ∈ g̃iBπ(0)
there exists an ε > 0 such that Exp ∣Bε(p̃) and Exp ∣Bε(q̃) are diffeomorphisms onto their images. Using the
fact that there is an isometry in M which takes the point p = Exp(p̃) to q = Exp(q̃), we see by composing
this map with Exp ∣Bε(p̃) and (Exp ∣Bε(q̃))−1 that there is an isometry from Bε(p̃) ⊆ g̃iBπ(0) to Bε(q̃) taking
p̃ to q̃. We call this isometry j ∶ Bε(p̃)→ Bε(q̃).

At the moment ε depends on p̃, q̃ and i. In fact we simply have that ε = ε(∣p̃∣, ∣q̃∣) > 0, as we now explain.
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We consider the exponential map at p̃ and the exponential map at q̃. Lifting j, using these maps, we
obtain a map, j̃, which is an element in O(n). That is j = Expq̃ ○j̃ ○ Exp−1p̃ and j∗g̃ = g̃ (we have dropped

the index i) on Bε(p̃) (there is a typo in the picture above: it should be j = Expq̃ ○j̃ ○ Exp−1p̃ and not

j = Expp ○j̃ ○ Exp−1p̃ ). Using the fact that all maps and metrics are analytic, we can extend this map j to
an isometry on a ball of radius δ = δ(max(π − ∣q̃∣, π − ∣p̃∣)). That is ε = ε(∣p̃∣, ∣q̃∣) > 0, as claimed. That is :
the size of the balls where we have local isometries is not degenerating with i. We then obtain a smooth
Cheeger-Gromov limit (g̃iBπ(0), g̃) → (g̃Bπ(0), g̃) where Ric(g̃) = 0 and ∣Riem∣ ≤ 1 such that the limiting

space is locally homogeneous. Using the ideas of Cheeger-Anderson on W 1,p harmonic coordinates we show

0 < δ(n) < ∫
g̃iBπ

2
(0)

∣Riem∣n2 dg̃i → ∫
g̃Bπ

2
(0)

∣Riem∣n2 dg̃ = 0

◻

For the proof of theorem 1 we let K = ∣Riem∣g(b). If 1
16K

≥ (b − a) we have that K ≤ 1
16(b−a) as claimed. So

assume 1
16K

< (b − a). Then

∫
b

a
∣Riem(t)∣2dt ≤ c(n)∫

b

a
2∣Ric∣2dt = c(n)∫ Ṙ(t)dt = c(n)(R(g(b)) −R(g(a))).

If t ∈ [b − 1
16K

, b], then from the so called doubling estimate we have that

∣Riem(g(t))∣ ≥ 1

2
∣Riem(g(b))∣ = 1

2
K.

This implies

c(n)(R(g(b)) −R(g(a))) ≥ ∫
b

a
∣Riem(g(t))∣2 ≥ ∫

b

b− 1
16K

∣Riem(g(t))∣2 ≥ ∣Riem(g(b))∣
64

.

◻
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