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• 8/28/86. Faltings, Minimal compactifications of moduli

spaces

• 9/03/86. Gross, on Noam Elkies: Any elliptic curve E/Q

has an infinite number of supersingular primes.

• 9/04/86. Zagier, A formula for ζK(2) and a conjecture

for ζK(m), m ≥ 1.

• 9/10/86. Vigneras. Stray course on local class field

theory.

• 9/11/86. Casson, Counting representations of the

fundamental group of a 3-manifold

• 9/16/86. Tunnell, On Fermat’s conjecture

• 9/17/86. Gross, singular moduli

• 9/18/86. Eckmann. Euler characteristics of groups
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(vanishing theorems)

• 9/23/86. Henniart, The numerical local Langlands

conjecture for GL(n)

• 9/23/86. Ribet. Representations of G = Gal(Q̄�Q) into

GL(2,F), I

• 9/25/86. Vigneras. Heisenberg groups and dual reductive

pairs

• 9/30/86. Ribet, II

• 10/1/86. de Shalit, Cyclotomic theory

• 10/1/86. Milne. Arithmetic of Automorphic Forms

• 10/2/86. Hales. The elliptic term of the trace formula and

orbital integrals

• 10/6/86. Laumon. A global analysis of the nilpotent cone
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Seminar talks during the 1986-87 year included: Kottwitz,

Harder, Sarnak, Saito, Prasad, Ramakrishnan, Rubin, Michael

Harris, Carayol, Rogawski, Soulé, Laumon, Katz, Hida,

Silverberg, Zagier, Brylinski, Blasius, Greenberg, Coleman,

Schneider, Bloch, Wintenberger, and Vignéras.
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Outline of Lecture Series

1. Tuesday – Langlands program and the trace formula
(characteristic zero) (Analytic representation theory)

2. Wednesday – The fundamental lemma (positive
characteristic) (Geometric representation theory)

3. Thursday – Changing characteristics and motivic
integration in the Langlands program (Logical
representation theory)
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Outline of Today’s Talk (characteristic zero)

1. The trace formula – motivation and examples

2. Application: Tamagawa numbers

3. Local Langlands for GL(n)
4. Local Langlands for Sp(2n)
5. Langlands dual

6. Introduction to Endoscopy
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Trace Formula for finite groups.

Let G be a finite group.

Let V = complex vector space of class functions:
f(g−1γg) = f(g).
V has two canonical bases.

• The set of characteristic functions of conjugacy classes
Cγ = {g−1γg ∶ g ∈ G}.

• The set of irreducible characters of G: γ � traceπ(γ),
where π is an irreducible representation of G. Note that
tr(A−1BA) = tr(B).
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If h ∈ V is any class function, it can be expanded in terms of
these two bases:

�
C

aC(h)1C =�
π

mπ(h) trπ.
For example, if h is the character of a representation of G,
then the left-hand side is an explicit character formula and the
right hand side gives the multiplicities of irreducibles.
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The identity can be transformed from an identity of functions
into an identity of distributions. If φ ∶ G→ C, there is a
distribution (also denoted φ) such that

φ(f) =�
G

φ(g)f(g)dg, ∀f ∈ C∞c (G).
Then the character identity becomes the trace formula

�
C

aC(h)1C =�
π

mπ(h) trπ.
Notationally, it the same formula as before, but now both
sides are viewed as linear functionals on C∞c (G).
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More explicitly, if 1C is viewed as a distribution,

1C(f) =�
G

1C(g)f(g)dg =�
C

f(c)dc = �
Gγ�G

f(g−1γg)dg
for γ ∈ C.

This is called an orbital integral. (Here orbit means an orbit
under conjugation.)

Hence the trace formula states that a sum of orbital integrals
equals a sum of irreducible characters.

Orbital integrals generalized to locally compact unimodular
groups G by replacing the sum with an integral.
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Poisson summation formula as trace formula

Let Λ ⊂ Rn be a lattice.

Let Λ∗ = {y ∈ Rn ∶ x ⋅ y ∈ Z, ∀x ∈ Λ} be the dual lattice.

Let f̂(y) = ∫Rn f(x)e−2πix⋅y dx. Note that this is just the
distribution attached to the irreducible character e−2πi(−⋅y)
applied to f .

Let f ∶ Rn → C be a test function such that

• ∫Rn �f(x)� <∞
• ∑x∈Λ �f(x + u)� converges uniformly on compact sets.

• ∑Λ∗ f̂(y) converges absolutely.
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Theorem 1 (Poisson summation). Under these conditions,

vol(Rn�Λ)�
x∈Λ

f(x) = �
y∈Λ∗

f̂(y).
The left-hand side is the geometric side. The right-hand side
is the spectral side.

Note: Since Λ is abelian, a conjugacy class is just a singleton
in Λ. The left-hand side is such a sum of orbital integrals of
conjugacy classes in Λ. The right-hand side is just the sum of
irreducible characters (viewed as distributions).

In general, a trace formula is a nonabelian Poisson summation
formula.
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Selberg trace formula for compact quotients

Let Γ ⊂ G be a discrete co-compact subgroup of a locally
compact unimodular topological group. (Say Λ ⊂ Rn.)

G acts on L2(Γ�G) by right translation. If R is this
representation, we may view tr(R) as a distribution. The
Selberg trace formula is

tr(R)(f) = �
γ∈{Γ}

vol(Γγ�Gγ)�
Gγ�G f(g−1γg)

=�mπ tr(f),
for f ∈ C∞c (G).
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Let AF be the ring of adeles of a number field F . Recall that
this is a locally compact topological ring given as a restricted
product

AF = ′�
v

Fv

where v runs over all places (equivalence classes of
multiplicative norms on F ), and Fv denotes the completion of
Fv with respect to the metric given by the norm. For example,
if F = Q, one such place is the usual absolute value, with
completion R. The places are called archimedean or
non-archimedean according to whether the the norm is
unbounded or bounded on Z ⊂ F .

It is known that F is discrete and co-compact in AF under the
diagonal embedding. In particular, we have a Poisson
summation formula for F ⊂ AF (Tate’s thesis).
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Arthur-Selberg trace formula (Selberg did rank 1)

But we obtain a much more interesting trace formula, if we
choose G, a connected reductive group over a number field F .

G(F ) is discrete in G(AF ) and the quotient
G(F )Z(AF )�G(AF ) has finite volume. The Arthur-Selberg
trace formula gives a similar expression for the trace of the
representation of G(AF ) on the right of

L2
disc(G(F )Z(AF )�G(AF )).

The geometric side is a sum of orbital integrals (and other
terms). The spectral side contains terms like the compact
quotient case (and other terms).
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Application: Tamagawa numbers

Let F be a number field. Now assume that G is semi-simple
and simply connected. G(F )�G(AF ) carries a canonical
measure (coming from an invariant differential form of top
degree on G). The volume is the Tamagawa number of G.
Theorem 2 (Langlands-Lai-Kottwitz).

vol(G(F )�G(AF )) = 1.
Langlands proved the theorem for G split using the theory of
Eisenstein series (Boulder conference). For a group over Q,
the proof comes down to calculating the volume of
G(Z)�G(R).
Lai (1980) extended Langlands’s proof to quasi-split groups.

Kottwitz (1988) used the trace formula to prove the theorem
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By Lai’s result, it is enough to show that the Tamagawa
number for G is equal to the Tamagawa number for G∗, the
quasi-split inner form.

The geometric side of the Arthur-Selberg trace formula
contains the term

vol(G(F )�G(A))f(1).
corresponding to the “orbital integral” of 1 ∈ G(F ).
We have the trace formulas for G and G∗. Subtract one from
the other:

geomG(f) − geomG∗(f) = specG(f) − specG∗(f).
By a careful choice of f =∏v fv , Kottwitz is able to cancel
all terms on the left except the term of interest:

(vol(G(F )�G(A)) − vol(G∗(F )�G∗(A)))fu(1)
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(vol(G(F )�G(A)) − vol(G∗(F )�G∗(A)))fu(1)
as fu runs over the spherical Hecke algebra at some

quasi-split place u. The trace formula says that the sum over

the spectral side is discrete, while local harmonic analysis

says that the spectral formula for fu(1) is continuous. This

forces the spectral side to vanish. Finally, this forces the term

of interest to vanish.
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Local Langlands for GL(N).
Harris and Taylor have proved the local Langlands conjecture

for GL(N). We review this result.

Let F now be a non-archimedean local field of characteristic

0, with residue field kF .

The Weil group WF of F as an abstract group is the subgroup

of Gal(F̄ �F ) of elements whose image in Gal(k̄F �kF ) is a

finite power of Frobenius. The map WF → Gal(F̄ �F ) is

continuous.

Let LF =WF × SU(2). Let Φ(N) be the set of equivalence

classes of semisimple continuous representations of

LF → GL(N,C).
Let Π(N) be the set of equivalence classes of irreducible

admissible representations of GL(N,F ).
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Theorem 3 (Harris-Taylor). For each N ≥ 1, there exists a
unique bijection Φ(N)↔ Π(N) with properties.

• N = 1 is the bijection Φ(1) = Π(1) of local class field
theory.

• φ⊗ χ→ π ⊗ (χ ○ det).
• det ○φ = central character of π.

• φv = πv .

• L(s,φ1 × φ2) = L(s,π1 × π2).
• �(s,φ1 × φ2,ψF ) = �(s,π1 × π2,ψF ).

A similar bijection holds (by Langlands) for GL(N) over

archimedean fields. The local Langlands conjectures asks for

a similar correspondence for any reductive group G.
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Arthur has obtained a local Langlands correspondence for
classical groups Sp(2n,F ) and SO(N,F ) (assuming work
in progress on the stabilization of the twisted trace formula).

We describe his result for G = Sp(2n,F ).
Let Φbdd be the set of equivalence classes of semi-simple
continuous representations LF → SL(2n + 1,C) whose
image is relatively compact.

For each φ ∈ Φbdd, let Sφ = Sφ�S0
φ, where Sφ = Cent(Im φ).

Let Πtemp be the set of equivalence classes of irreducible
tempered representations of Sp(2n,F ).
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Arthur’s theorem [contingent of Walspurger’s promised work]
states the existence of an injective map

Πtemp → {(φ, a) ∶ φ ∈ Φbdd, a ∈ Ŝφ}.
This map is characterized by identities between characters of
Sp(2n,F ) and twisted characters of GL(2n + 1, F ).

23
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Remarks: This (including a related statement for special
orthogonal groups) is one of the main three theorems in
Arthur’s book. The other main theorems are global.

If θ is an automorphism of G (over F ) and ω is a
quasi-character of G(F ), there is a twisted orbital integral

�
...
f(g−1γ(θ(g)))ω(g)dg.

The automorphism θ can be inserted on the spectral side of
the trace formula as well. An identity between twisted orbital
integrals and the twisted spectral terms is a twisted trace
formula.

24
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The main tool in Arthur’s book is the (stable) twisted trace

formula. He must make comparisons among many trace

formulas. The twisted trace formula of GL(N) with outer

automorphism θ, the standard trace formula for classical

groups Sp(2n,F ) and SO(N,F ), and the twisted trace

formula for SO(2n,F ) with outer automorphism.
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Proof strategy (irredeemably simplified): each representation

Φbdd gives LF → SO(2n + 1,C)→ GL(2n + 1,C), and by

Harris and Taylor an irreducible admissible representation of

GL(2n + 1, F ). The difference of the twisted trace formula

on GL(2n + 1, F ) and the trace formula on Sp(2n,F ) is

geomθ,GL(f) − geomSp(f ′) = specθ,GL(f) − specSp(f ′).
Use the twisted fundamental lemma to relate the twisted

orbital integrals of suitable f with the orbital integrals of f
′
.

Cancel the geometric side. Deduce spectral relations.
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Arthur “Endoscopic Classification of Representations:

Orthogonal and Symplectic Groups” (590 pages, 2013).

Waldspurger (6 papers posted on the arXiv in 2014, with more

to come on the stabilization of the twisted trace formula)

1. 18 jan, 137 pages, twisted endoscopy over a local field.

2. 28 jan, 105 pages, orbital integrals and endoscopy over a

non-archimedean field (statements)

3. 12 feb, 95 pages, orbital integrals . . . (proofs)

4. 6 mar, just 35 pages, archimedean and spectral

5. 9 april, 91 pages, orbital integrals over R

6. 9 june, 132 pages, geometric side of the twisted trace

formula

Missing(?) spectral side of the stable twisted trace formula.
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These 1200 pages (so far) merit an entry on Wiki’s List of

Long proofs. The list includes about 20 entries.

• 1880 Killing’s classification of complex simple Lie

algebras (180 pages)

• 1966 Harish-Chandra discrete series (150 pages)

• 1976 Langlands, Eisenstein series (337 pages)

• 1983 Hejhal, Selberg trace formula (1322 pages)

• 19XX Arthur, on the trace formula (several hundred

pages)

• 2000, Lafforgue on the Langlands conjectures for GL(n)
over function fields (600 pages)

plus Weil Conjectures, Grothendieck, Hironaka, Almgren,

4-color theorem, Classification of Finite simple groups, etc.
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Note that Arthur relates

• irreducible tempered representations of Sp(2n,F ),
• finite dimensional homomorphisms of LF into
SO(2n + 1,C).

This is an example of a general duality. Each reductive group
G over a local field has a complex dual reductive group Ĝ.

A big part of the Langlands program is to relate the
representation theory of two reductive groups whenever their
duals are related.
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Analogy: Let V be a finite dimensional vector space over R.
For each λ ∈ HomR(V,C), we have a 1-dimensional
representation of V : v � eλ(v).
The dual Ĝ of a reductive group G is a complex reductive
group. An (inner or outer) form of G has the same dual Ĝ.

• If (X∗,X∗,Φ,Φv) is the classifying data of G, then
(X∗,X∗,Φv,Φ) is the data of Ĝ.

• Duality exchanges short and long roots.

• Duals of groups with connected center are groups whose
derived group is simply connected. (In particular, duals
of adjoint groups are simply connected.)
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Here are some examples.

• GL(n)↔ GL(n).
• GSp(4)↔ GSp(4).
• SL(n)↔ PGL(n).
• SO(2n)↔ SO(2n).
• SO(2n + 1)↔ Sp(2n).
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There is a more refined version of the the Langlands dual:
LG = Ĝ �WF (or LG = Ĝ �Gal(F̄ �F )). Every inner form of
G has the same dual LG, so we may take G to be quasi-split.

We have an action of Gal(F̄ �F ) on (X∗,X∗,Φ,Φv) that
permutes the set of positive simple roots. We have the same
action on the dual data (X∗,X∗,Φv,Φ). By fixing a splitting
of Ĝ, we obtain an (algebraic action) of Gal(F̄ �F ) as outer
automorphisms of Ḡ.
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Example: G = U(n) splits over a quadratic extension E�F .
Over F̄ (or E), G becomes isomorphic to GL(n). Hence
Ĝ = GL(n,C).
Let θ be the “transpose-inverse” outer automorphism of Ĝ of
order 2 that acts non-trivially on the set of positive roots.

Let Gal(F̄ �F ) act on Ĝ through its quotient Gal(E�F ) ≅ �θ�,
with semidirect product LG = Ĝ �Gal(F̄ �F ).
The notation is not entirely standardized: Ĝ �Gal(F̄ �F ),
Ĝ �WF , Ĝ �Gal(E�F ), etc.
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