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Outline of Lecture Series

1. Tuesday – Langlands program and the trace formula
(characteristic zero) (Analytic representation theory)

2. Wednesday – The fundamental lemma (positive
characteristic) (Geometric representation theory)

3. Thursday – Changing characteristics and motivic
integration in the Langlands program (Logical
representation theory)
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If G is a reductive group/ local field, a trace formula is a
linear relation among

• characters as distributions

f �→ trace
�

G
f(g)π(g) dg, f ∈ C∞c (G),

• conjugacy classes as distributions:

f �→ O(γ, f) =
�

Iγ\G
f(g−1γg) dg, f ∈ C∞c (G),

where Iγ is the centralizer of γ ∈ G.
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Almost the same thing works, if we 
convert functions to distributions
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Selberg trace formula for compact quotients

Let Γ ⊂ G be a discrete co-compact subgroup of a locally
compact unimodular topological group. (Say Λ ⊂ Rn.)

G acts on L2(Γ�G) by right translation. If R is this
representation, we may view tr(R) as a distribution. The
Selberg trace formula is

tr(R)(f) = �
γ∈{Γ}

vol(Γγ�Gγ)�
Gγ�G f(g−1γg)

=�mπ trπ(f),
for f ∈ C∞c (G).

4

Friday, September 5, 2014



 

Fundamental Lemma

5

Arthur-Selberg trace formula (Selberg did rank 1)

But we obtain a much more interesting trace formula, if we
choose G, a connected reductive group over a number field F .

G(F ) is discrete in G(AF ) and the quotient
G(F )Z(AF )�G(AF ) has finite volume. The Arthur-Selberg
trace formula gives a similar expression for the trace of the
representation of G(AF ) on the right of

L2
disc(G(F )Z(AF )�G(AF )).

The geometric side is a sum of orbital integrals (and other
terms). The spectral side contains terms like the compact
quotient case (and other terms).

5

Friday, September 5, 2014



 

Fundamental Lemma

6

Proof strategy (irredeemably simplified): each representation

Φbdd gives LF → SO(2n + 1,C)→ GL(2n + 1,C), and by

Harris and Taylor an irreducible admissible representation of

GL(2n + 1, F ). The difference of the twisted trace formula

on GL(2n + 1, F ) and the trace formula on Sp(2n,F ) is

geomθ,GL(f) − geomSp(f ′) = specθ,GL(f) − specSp(f ′).
Use the twisted fundamental lemma to relate the twisted

orbital integrals of suitable f with the orbital integrals of f
′
.

Cancel the geometric side. Deduce spectral relations.
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A big part of the Langlands program is to relate the
representation theory of two reductive groups whenever their
duals are related.

The dual Ĝ of a reductive group G is a complex reductive
group. An (inner or outer) form of G has the same dual Ĝ.

• If (X∗,X∗,Φ,Φv) is the classifying data of G, then
(X∗,X∗,Φv,Φ) is the data of Ĝ.

• Duality exchanges short and long roots.

• Duals of groups with connected center are groups whose
derived group is simply connected. (In particular, duals
of adjoint groups are simply connected.)
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Here are some examples.

• GL(n)↔ GL(n).
• GSp(4)↔ GSp(4).
• SL(n)↔ PGL(n).
• SO(2n)↔ SO(2n).
• SO(2n + 1)↔ Sp(2n).

28
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There is a more refined version of the the Langlands dual:
LG = Ĝ �WF (or LG = Ĝ �Gal(F̄ �F )). Every inner form of
G has the same dual LG, so we may take G to be quasi-split.

We have an action of Gal(F̄ �F ) on (X∗,X∗,Φ,Φv) that
permutes the set of positive simple roots. We have the same
action on the dual data (X∗,X∗,Φv,Φ). By fixing a splitting
of Ĝ, we obtain an (algebraic action) of Gal(F̄ �F ) as outer
automorphisms of Ḡ.
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TOPICS: perverse sheaves, purity, middle extension, local
systems, decomposition theorem, affine Springer fibers,
spectral curves, Hitchin fibration, cameral covers, Higgs pairs,
completely integrable systems, torsors, G-bundles, gerbs,
stacks (Artin and Deligne-Mumford), endoscopic groups,
Langlands dual, fundamental lemma, stable conjugacy,
Tate-Nakayama duality, mass (groupoid cardinality),
groupoids, orbital integrals, weighted orbital integrals,
faithfully flat descent, weak abelian fibrations, Poincaré
duality, Pontryagin product, spectral sequences, Weil
restriction, Arthur-Selberg trace formula, stabilization, Hecke
algebras, Galois cohomology, Grothendieck Lefschetz trace
formula, Kostant section, transfer factors, reductive groups,
polarized abelian varieties, Picard stack, Chevalley’s theorem,
Satake transform
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Credits:

Langlands, Shelstad
Waldspurger
Kottwitz, Goresky, MacPherson
Laumon, Ngô

many many others: Labesse, Chaudouard, Arthur,
Kazhdan,. . .
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n ∈ N, n ≥ 2,
Vn,+ = space of holomorphic functions f on the upper half
plane h such that

�

h
|f |2yn−2dx dy <∞.

SL2(R) acts on Vn,+:


a b

c d



 · f(z) = (−bz + d)−nf(
az − c

−bz + d
).

Vn,− = anti-holomorphic discrete series.
Θn,± characters of Vn,±.
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The example of 2 by 2 matrices
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The characters are equal: Θn,+(g) = Θn,−(g), except when g

is conjugate to a rotation

γ =



 cos θ sin θ

− sin θ cos θ



 .

When g is conjugate to γ, a remarkable character identity
holds:

Θn,−(γ)−Θn,+(γ) =
ei(n−1)θ + e−i(n−1)θ

eiθ − e−iθ
.

This has the general form

alternating sum =
character on smaller group

transfer factor

Problem: find and prove in full natural generality.
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The basic example that leads to the FL
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From character identity to the FL:

Θn,−(γ)−Θn,+(γ) =
e
i(n−1)θ + e

−i(n−1)θ

eiθ − e−iθ

alternating sum = denominator × sum on smaller group

Oκ(ν(a)) = q
rv(a)

SOH(a)

• Replace SL2 with reductive group G.

• Replace R with nonarchimedean local field Fv .

• Replace characters with orbital integrals.

• Replace signs ± on LHS with roots of unity �κ, γ�.

• Replace rotation group with H (endoscopic).

• Replace denominator with transfer factor q
...

.
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A six-fold generalization
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The six-fold generalization.
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cos θ − sin θ

sin θ cos θ



 and



 cos θ sin θ

− sin θ cos θ





in SL2(R) are conjugate by the complex matrix



i 0

0 −i



,

but they are not conjugate in the group SL2(R) when
θ �∈ Zπ.

Let G be a reductive group defined over a field F with
algebraic closure F̄ .
Definition 1. An element γ� ∈ G(F ) is said to be stably
conjugate to a given regular semisimple element γ ∈ G(F ) if
γ� is conjugate to γ in the group G(F̄ ).
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The characters are equal: Θn,+(g) = Θn,−(g), except when g

is conjugate to a rotation

γ =



 cos θ sin θ

− sin θ cos θ



 .

When g is conjugate to γ, a remarkable character identity
holds:

Θn,−(γ)−Θn,+(γ) =
ei(n−1)θ + e−i(n−1)θ

eiθ − e−iθ
.

This has the general form

alternating sum =
character on smaller group

transfer factor

Problem: find and prove in full natural generality.
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Clockwise and counterclockwise are 
not conjugate.
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Let Iγ be the centralizer of an element γ ∈ G(F ). Write

γ� = g
−1γg,

for g ∈ G(F̄ ). With σ ∈ Gal(F̄ /F ), we have

g σ(g)−1 ∈ H
1(F, Iγ)

• The class does not depend on the choice of g.

• It is the trivial class when γ� is conjugate to γ.

• When F is a local field and γ is regular semisimple,
A = H

1(F, Iγ) is a finite abelian group.
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A finite abelian group
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A = H
1(F, Iγ) is a finite abelian group. Every function

A→ C has a Fourier expansion as a linear combination of
characters κ : A→ C.

Roughly, the Fourier mode of κ (for given Iγ and G) produces
oscillations that cause some of the roots of G to “cancel” and
the others to become more “pronounced”. The mode of κ on
the group G should be related to the dominant mode on H .

Θn,−(γ)−Θn,+(γ) =
e
i(n−1)θ + e

−i(n−1)θ

eiθ − e−iθ
.

13
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The effect of oscillation on root systems
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Recall the basic philosophy: if duals are related then the
representation theory should be related.

The simplest way in which duals are related occurs when one
dual is a subgroup of another dual group, given by the
connected centralizer of a semisimple element:
Ĥ = CĜ(s)0 ⊂ Ĝ.

When this happens we say that the smaller group H is an
endoscopic group of the larger group G. (This will be made
more precise later.)
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The smaller group H , formed from the pronounced subset of
the roots of G, is called an endoscopic group.
There is a surjection

T̂
Γ → H

1(F, Iγ)∗

Definition 2 (endoscopic group). Let F be a local field. The
endoscopic group H associated with (G, Iγ , κ) is defined as
follows.

Ĥ = Î
0
κ ⊂ Ĝ.

Pick quasi-split form H by forcing isomorphic Cartan
subgroups IH of H with Iγ in G.
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Endoscopic group
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Take ring of polynomial functions k[xij ] on the vector space
of n by n matrices.

It has a subring k[xij ]GL(n) of polynomial functions f such
that f(g−1γg) = f(γ) for all g ∈ GL(n). This subring is
generated by the coefficients ci of the characteristic
polynomial

p(t) = tn + cn−1t
n−1 + · · · + c0 (3)

of a matrix γ ∈ g = gl(n). The morphism χ : g→ c is the
“characteristic map” that sends γ to (cn−1, . . . , c0).
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Characteristic function of a matrix
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For simplicity, we move from conjugacy in the group G to
conjugacy in the Lie algebra g.

Let G be a split reductive group over a field k and let g be its
Lie algebra, with split Cartan subalgebra t and Weyl group W .
Assume that the characteristic of k is sufficiently large. The
group G acts on g by the adjoint action. By Chevalley,

k[g]G = k[t]W .

Set c = Spec (k[t]W ) and χ : g→ c.

Two regular elements γ, γ� are stably conjugate↔
χ(γ) = χ(γ�).
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Chevalley generalization of 
characteristic polynomials
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k finite field

Fv nonarchimedean local field containing k

Ov integers of Fv

a ∈ c(Fv) regular semisimple

Ja centralizer Iγ0 , γ0 = �(a)
κ : H1(Fv, Ja) → C×

�κ, γ� the pairing of of κ with the cohomological invariant of

γ. A κ-orbital integral:

Oκ(a) =
�

χγ=a

�

Iγ\G(Fv)
�κ, γ�1g(Ov)(Ad g−1(γ))dg,

1g(Ov) the characteristic function of g(Ov)
Haar measure dg, and quotient by dt.
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The kappa orbital integral generalizes 
the LHS of the character sum
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The characters are equal: Θn,+(g) = Θn,−(g), except when g
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alternating sum =
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Problem: find and prove in full natural generality.

6

Friday, September 5, 2014



κ determines H over Ov

Add subscripts for H: cH , etc.
ν : cH = t/WH → t/W = c.
If κ is trivial, write SO for Oκ.
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Now for the RHS of the identity
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Theorem 4 (fundamental lemma (FL), Ngô (2010)). Assume
that the characteristic of Fv is greater than twice the Coxeter
number of G. For all regular semisimple elements
a ∈ cH(Ov) whose image ν(a) in c is also regular
semisimple, the κ orbital integral of ν(a) in G is equal to the
stable orbital integral of a in H , up to a power of q:

Oκ(ν(a)) = q
rv(a)

SOH(a), where rv(a) = deg
v
(a∗R).

The FL is the natural generalization of the character identity:

Θn,−(γ)−Θn,+(γ) =
e
i(n−1)θ + e

−i(n−1)θ

eiθ − e−iθ

The FL has been simplified (by Waldspurger and others)
from its original statement by Langlands (1980).
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The fundamental lemma is the key identity between orbital
integrals that is needed for the comparison of the trace
formulas for G and H . The fundamental lemma makes it
possible to extract relationships between representations of H
and representations of G.
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The integrand
1g(Ov)(Ad g−1(γ))dg

is invariant under g �→ g� ∈ g G(Ov). So the orbital integral
counts cosets, weighted by roots of unity �κ, γ�, meeting the
support of the integrand.

Coset counting approaches to the FL failed (for good reason).

Kazhdan-Lusztig (1988)

Mv(a, k̄) = {g ∈ G(F̄v)/G(Ōv) | Ad g−1γ ∈ g(Ōv)},

where γ = �(a), is the set of k̄-points of an ind-scheme called
the affine Springer fiber.
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Coset geometry
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Let’s do a calculation!
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Try so(5) = vector space of 5 by 5 skew-symmetric matrices.
a ∈ c(Fv) characteristic polynomial
0,±t1,±t2 the eigenvalues of a matrix
γ = �(a) ∈ so(5) ⊂ gl(5) with characteristic polynomial a.
Assume for some odd r ∈ N,

|α(γ)| = q−r/2, ∀ roots α.

Ea : y2 = (1− x2τ1)(1− x2τ2), τi = t2i /�r, unifzr �.

SO(a, f) = A(q) + B(q) card(Ea(k)), rational fn. A, B.
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Orbital integrals count points on curves
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There is a variant of the FL that only involves κ = 1. In this
case the Lie algebra of the endoscopic group is sp(4).

The corresponding calculation of orbital integrals in sp(4)
gives a different elliptic curve E�

a, but otherwise identical to
the formula for so(5).

Ea and E�
a have different j-invariants.

FL↔ isogeny between Ea and E�
a.

The FL seems to involve the geometry of abelian varieties?!

Similar calculations of orbital integrals for so(2n + 1) yield
y2 = (1− x2τ1) · · · (1− x2τn), hyperelliptic curves.
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FL as isogeny
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Goresky, Kottwitz, and MacPherson made an extensive
investigation of affine Springer fibers and conjectured that
their cohomology groups are pure. Assuming this conjecture,
they prove the FL for elements whose centralizer is an
unramified Cartan subgroup. They prove the purity result in
particular cases by constructing pavings of the affine Springer
fibers.

Laumon has made a systematic investigation of the affine
Springer fibers for unitary groups. Ngô joined the effort, and
together they succeeded in giving a complete proof of the FL
for unitary groups.
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Main work on the FL before Ngo
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Ngô encountered two major obstacles in trying to generalize

this earlier work to an arbitrary reductive group.

(1) Torus Actions: These approaches calculate the

equivariant cohomology by passing to a fixed point set in

Mv(a) under a torus action. In general, a nontrivial torus

action simply doesn’t exist.

(2) Purity: The second serious obstacle: the purity conjecture

itself. Deligne’s work suggests proving purity in a family of

varieties, rather than individually. Ngô investigated families

varying over a base curve X , moving us from local geometry

of Fv to the global geometry of X . He found that the

Hitchin fibration

is the global analogue of affine Springer fibers.
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Limits to earlier approaches
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Schiffmann described the stack of Higgs bundles and the

Hitchin map in yesterday’s lecture.

Châu’s proof of the FL is based on the Hitchin map (for a

general reductive group G) with mild changes. No stability

condition is imposed on bundles.

A Higgs pair is a pair (E,φ) where E is a G-torsor on X and

φ is a section of ad(E)⊗OX D, where D is a line bundle and

ad(E) is the vector bundle on X coming from the adjoint

representation on the Lie algebra of G.

Note: D is not the same as yesterday. Because of this change,

in our context, the moduli stack of Higgs bundles is not

symplectic, and there is no completely integrable system. The

Hitchin map is not Lagrangian.

14Friday, September 5, 2014
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Hitchin fibration for GL(n)
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The starting point of NBC’s proof of the FL is the following

theorem:

Theorem 1 (Ngô). There is an explicit test function fD,

depending on the line bundle D, such that for every

anisotropic element a ∈ Aan
, the sum of the orbital integrals

with characteristic polynomial a in the trace formula for fD
equals the number of Higgs pairs in the Hitchin fibration over

a, counted with multiplicity.

The proof is based on Weil’s description of vector bundles on

a curve in terms of the cosets of a compact open subgroup of

G(A). Orbital integrals have a similar coset description.

15

Friday, September 5, 2014



 

Fundamental Lemma

36

The stabilization of the geometric side of the trace formula

consists of two manipulations of the trace formula.

• Rearrange the terms according to the Fourier expansion

of characters κ of H
1(F, Iγ).

• For non-trivial κ, use the fundamental lemma (and related

identities) to replace the κ-terms with stable terms on the

corresponding endoscopic group H .

With the interpretation of orbital integrals as counting points

on Hitchin fibers, we can try to manipulate the Hitchin fibers

in parallel with the manipulation of the trace formula.

16
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X = smooth projective curve of genus g over k.

G reductive group over X

g, c, . . . over X

D = line bundle on X .

E vector bundle on X with fiber V

ϕ a section of end(V )⊗D. The Hitchin fibrationMG,X,D

for G = GL(n) = GL(V ) is given by the groupoid
a

of pairs

(E,ϕ).
a
A groupoid is a category in which all morphisms are invertible

27
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Hitchin fibration
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Generally,M =MG,X,D is the stack that assigns to a
k-scheme S the groupoid of pairs

(E,ϕ),

E = G-torsor over X × S

ϕ = section of Ad(E)⊗D = Ad(E)D.

The fiber of Ad(E) is g, and the morphism χ : g→ c, fiber
by fiber, gives a morphism f(φ) ∈ cD(X × S).

f :M→ A = H
0(X, cD).

The fiber of f over a ∈ A isMa.
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Hitchin for general G
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Key ideas
a

of the Proof of the FL

• Hitchin fibration is the global analogue of the affine

Springer fiber.

• The Hitchin fibration carries a large symmetry group

P(Ja) that is well-suited for the FL and endoscopic

groups.

• Continuity arguments can be used.

• The purity conjecture can be replaced globally (with pure

perverse sheaves).

a
For endoscopy, use the same X and D for both G and its endoscopic

group H .
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Key ideas
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affine Springer fiber Hitchin fibration

local global

G-torsors on Xv×̂S . . . G-torsors on X × S . . .

local orbital integrals adelic orbital integrals

There is an equivalence of categories at the level of k̄-points:

�

v∈X̄\U

Mv(a) ∧ · · · and Ma

(U = good places for a)

Many of us believed that a global argument could not work,

because the FL is precisely what is needed to start using

global arguments. We said global arguments are bound to be

circular.
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Local-Global correspondence
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“I also had occasion to listen to lectures of Ngô . . . In
particular, I had to attach for myself some meaning to the
notion of stack and algebraic stack. It was a revelation. I
discovered that I had been thinking for decades of orbital
integrals in an incorrect way. I had separated the local from a
global part.” Langlands, Shaw Prize.

31

 

Fundamental Lemma

41

Friday, September 5, 2014



Symmetries of the Hitchin fibration

For G = GL(n), P (Ja) = Pic(Ya) acts on Ma where Ya is

an n-fold cover of X (depending on a = (cn−1, . . . , c0)):

tn + cn−1(v)tn−1 + · · ·+ c0(v) = 0, v ∈ X.

(a sufficiently generic)
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Second key idea: symmetry
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Iγ (centralizer), for γ ∈ g, depends only on a = χ(γ).
Ja = Iγ , as we vary a ∈ c, define a smooth group scheme J

over c. For each a : S → A, there is a groupoid P(Ja, S)
whose objects are

Ja-torsors on X × S.

Moreover, P(Ja, S) acts onMa(S).

As the S-point a varies, we obtain a Picard stack P acting

fiberwise on the Hitchin fibrationM.
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Symmetry in general
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Symmetry and Endoscopy

In general, it is hard to pass geometric information between G

and H .

No morphism H → G.

However, for a ∈ AH :

Jν(a) → JH,a, ν : AH → A.

is an isomorphism over a nonempty open set of X . So their

Picard groups are also directly related.

Strategy: viewMν(a) in terms of P(Jν(a)). Express FL

(insofar as possible) in terms of Picard.
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Symmetry
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Continuity

The complexity of an orbital integral is measured by the
dimension of its affine Springer fiber.

dimMv(a) ∼ degv(a∗D)→∞, D = discriminant divisor.

Approximate a with a� that satisfies transversality:
degw(a�∗D) ≤ 1 for all w ∈ X .

The justification of continuity is the deepest part of Ngô’s
work.
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Third Key Idea: Continuity

45

Friday, September 5, 2014



Locally the orbital integral is the number of k-points on an

affine Springer fiber.

Globally, the orbital integral is the number of k-points on a

Hitchin fibration.

This number is computed as a perverse sheaf on Aani
.

The geometric form of the fundamental lemma takes the form

of an equality of (the semisimplifications of) two perverse

sheaves

ν∗Lκ =?
LH,st

Lκ = p
H

n(f̃ ani

∗ Q̄�)κ, LH,st = p
H

n+2r(f̃ ani

H,∗Q̄�)st(−r)

on a common base space ν(Aani

H
).
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Fourth key idea: BBDG decomposition
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On an open subset U of this base space (consisting of
transverse elements a�), the FL is a relatively easy direct
calculation. Hence the (ss. of the) perverse sheaves are equal
on U . However, two perverse sheaves can be equal on a dense
open U without being equal.

By BBDG decomposition theorem (over k̄):

• If Z is closed irreducible,

• If two simple perverse sheaves have support Z.

• If they are equal on a dense open subset U .

• Then they are equal on Z.
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BBDG decomposition
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The BBDG theorem is a continuity result that provides the
infrastructure for Ngô’s proof of the FL by continuity. Even
though in the FL the perverse sheaves are not simple, Ngô
proves that every (good) geometrically simple factor has full
support. This support theorem is the technical heart of the
proof.

The proof of the support theorem breaks into two parts:

• Every support Z of every simple geometric factor also
appears as the support of some factor in the ordinary
cohomology of top degree.

• Supports in top degree ordinary cohomology are as large
as possible.
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The perverse sheaves are almost as 
good as simple ones.
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[A]n exposition [of the FL] genuinely 
accessible not alone to someone of my 
generation, but to mathematicians of all 
ages eager to contribute to the 
arithmetic theory of automorphic 
representations, would be, perhaps, ... 
close to 700 pages. -- Langlands
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Proof of the support theorem.
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“Lemma” is a misleading name for the Fundamental Lemma
because it went decades without a proof, and its depth goes far
beyond what would ordinarily be called a lemma.

Yet the name FL is apt both because it is fundamental and
because it is expected to be used widely as an intermediate
result in many proofs.

We mention some major theorems that have been proved that
contain the FL as an intermediate result. In each case, the FL
appears to be an unavoidable ingredient.

40

 

Fundamental Lemma
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The Arthur-Selberg trace formula

G reductive group over a number field F

�

γ∈G(F )/∼

cγO(γ, f) + · · · =
�

π

m(π) trace π(f) + · · ·

LHS = sum of adelic orbital integrals

RHS = sum over discrete series automorphic representations

Use the FL to rewrite the LHS:

�

H

�

γ∈H(F )/�

c�γSO(γ, fH) + · · ·

The endoscopic group are carried along in G’s penumbra

wherever the trace formula is used. All applications of the FL

come through the trace formula.
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Classical uses of early cases of the FL.

• cyclic base change→ certain cases of the Artin

conjecture→ Fermat.

• the calculation of the Hasse-Weil zeta function of some

simple Shimura varieties.

• FL/SL(n)→ local automorphic induction→ local

Langlands conjectures for GL(n).
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From elementary cases of the FL 
comes...
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General Sato-Tate laws
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An theorem that uses the FL from a recent paper by

Barnet-Lamb, Geraghty, Harris and Taylor

Let np be the number of ways a prime p can be expressed as a

sum of twelve squares:

np = card {(a1, . . . , a12) ∈ Z12 | p = a2
1 + · · · + a2

12}.

Then the real number

tp =
np − 8(p5 + 1)

32p5/2

belongs to the interval [−1, 1], and as p runs over all primes,

the numbers tp are distributed within that interval according

to the probability measure

2
π

�
1− t2 dt.

43

Friday, September 5, 2014



A use of the FL from Morel’s book. The L-function of the
intersection complex ICV of the Baily-Borel
compactification of the Shimura variety attached to a unitary
group takes the general form:

log LP(s, ICKV ) =
�

H

�
πH

�
rH

cH(πH , rH) log L(s− d/2, πH,P , rH).
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Cohomology of Shimura varieties
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A use of the FL in Bhargava and Shankar (2010)

Let E be an elliptic curve over Q. Let r be the rank of E(Q).
Let t be its analytic rank: L(E, s) = (s− 1)t + · · · . Then
r = t for a positive fraction of all elliptic curves (ordered by
height). (partial Birch-Swinnerton-Dyer)
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Ranks of elliptic curves
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Recent uses of the FL.

• Morel and Shin (Shimura varieties)→ Skinner and Urban

(Iwasawa conjectures)→ Bhargava and Shankar (BSD:

for a positive fraction of elliptic curves)

• Shimura varieties→ Sato-Tate

(Clozel-Harris-Shepherd-Barron-Taylor)→ better

Sato-Tate (Barnet-Lamb -Geraghty - Harris - Taylor)

• Classification of automorphic representations of classical

groups (Arthur)
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