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GEOMETRIC STRUCTURE AND THE LOCAL LANGLANDS
CONJECTURE

Let G be a reductive p-adic group which is connected and split. Examples
are GL(n, F),SL(n,F),SO(n, F),Sp(2n, F), PGL(n, F') where n can
be any positive integer and F' can be any finite extension of the field @, of
p-adic numbers. The smooth (or admissible) dual of G is the set of
equivalence classes of smooth irreducible representations of G. Within the
smooth dual there are subsets known as the Bernstein components, and
the smooth dual is the disjoint union of the Bernstein components. This
talk will explain a conjecture due to Aubert-Baum-Plymen-Solleveld
(ABPS) which says that each Bernstein component is a complex affine
variety. These affine varieties are explicitly identified as certain extended
quotients.

Paul Baum (Penn State) Geometric Structure September 5, 2014 2 /53



Joint work with Anne-Marie Aubert, Roger Plymen, and Maarten Solleveld.

Reference.

Geometric structure in smooth dual and the local Langlands conjecture
(with A. M. Aubert, R. J. Plymen, and M. Solleveld — expository paper
based on the Takagi lectures given by P. F. Baum at the November 2012
meeting of the Mathematical Society of Japan) Japanese Journal of
Mathematics 9, 1-38, 2014.
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Equivalence of categories

op
Commutative unital finitely generated | ., [ Affine algebraic
nilpotent — free C algebras ~\ varieties over C
OX)—X
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The extended quotient

Let I" be a finite group acting on an affine variety X.

X is an affine variety over the complex numbers C.

'xX — X

The quotient variety X /T" is obtained by collapsing each orbit to a point.
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For x € X, I, denotes the stabilizer group of .

L,={yvel|yr=2x}

¢(T) denotes the set of conjugacy classes of I.
The extended quotient is obtained by replacing the orbit of = by ¢(I}).

This is done as follows:
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Set X = {(y,2) e D x X | y& = x}
XcrxX
X is an affine variety and is a sub-variety of I' x X.

T acts on X.
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I' x )Z' — )Z'
g(v.@) = (gr9 " 9x) g€l (r,2)eX
The extended quotient, denoted X //T", is X /T.

i.e. The extended quotient X//I" is the ordinary quotient for the action of
I'on X.

The extended quotient is an affine variety.
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X ={(v,2) €T x X |y =z}
The projection XX

(v,2) —
is [-equivariant and, therefore, passes to quotient spaces to give a map
p: X//T— X/T

p is the projection of the extended quotient onto the ordinary quotient.
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X/T < X//T — X/T

x— (e,x)
e=identity element of I'.

X/T — X//T is the inclusion of the ordinary quotient in the extended
quotient.
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Since G — in the topology it receives from F' — is locally compact we
may fix a (left-invariant) Haar measure dg for G.

The Hecke algebra of GG, denoted HG@, is then the convolution algebra of

all locally-constant compactly-supported complex-valued functions
f:G—C.

(f+h)(9) = flg)+h(g) geG
9 €G
(f*h)(g) = /f (9~ 90 }ig;:;g
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Definition
A representation of the Hecke algebra HG is a homomorphism of C

algebras
¥ : HG — End¢(V)

where V' is a vector space over the complex numbers C.
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Definition

A representation
¥ : HG — Endc(V)

of the Hecke algebra HG is irreducible if 1 : HG — Endc(V) is not the
zero map and 3 a vector subspace W of V such that W is preserved by

the action of HG and {0} # W and W # V.
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Definition
A primitive ideal I in HG is the null space of an irreducible representation
of HG.

Thus
0 — I — HG -2 Ende(V)

is exact where 1) is an irreducible representation of HG.

There is a (canonical) bijection of sets
G — Prim(HG)

where Prim(HG) is the set of primitive ideals in HG.
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Bijection (of sets) R
G «—— Prim(HG)

What has been gained from this bijection?
On Prim(HG@) have a topology — the Jacobson topology.

If S is a subset of Prim(HG) then the closure S (in the Jacobson toplogy)
of S'is
S={JePrim(HG) | J> )1}
IeS
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Prim(HG) (with the Jacobson topology) is the disjoint union of its
connected components.

Point set topology. In a topological space W, a subset A is connected iff
whenever Uy, Us are two open sets of W with A C U; U U, and
UlﬁA%Q)and UgﬂA;é@then AﬂUlﬁUQ#Q.

Two points w1, wo of W are in the same connected component if and only
if 3 a connected subset A of W with w; € A and wy € A.

As a set, W is the disjoint union of its connected components. If each

connected component is both open and closed, then as a topological space
W is the disjoint union of its connected components.
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G = Prim(HG) (with the Jacobson topology) is the disjoint union of its
connected components. Each connected component is both open and
closed. The connected components of G = Prim(HG) are known as the
Bernstein components.

moPrim(HG) denotes the set of connected components of Prim(HG).

moPrim(HG) is a countable set and has no further structure.
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moPrim(HG) is the Bernstein spectrum of G.

ToPrim(HG) = {(M,0)}/ ~ where (M, o) can be any cuspidal pair i.e.
M is a Levi factor of a parabolic subgroup P of G
and o is an irreducible super-cuspidal representation of M.

~ is the conjugation action of (, combined with tensoring ¢ by unramified
characters of M.

“unramified” = "the character is trivial on every compact subgroup of M.”
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moPrim(HG) = {(M,0)}/ ~
(M,o) ~ (M',c") iff there exists an unramified character
: M — C* =C — {0} of M and an element g of G, g € G, with
9(M,p®0o)= (M, o)
The meaning of this equality is:
e gMg—!t =M

@ g.(¢¥ ® o) and ¢’ are equivalent
smooth irreducible representations of M.
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For each a € m,Prim(HG), R
G denotes the connected component of Prim(HG) = G.

The problem of describing G now breaks up into two problems.

Problem 1 Describe the Bernstein spectrum
T Prim(HG) = {(M, o)}/ ~.
Problem 2 For each a € m,Prim(HG) = {(M,0)}/ ~,

describe the Bernstein component @a.
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Problem 1 involves describing the irreducible super-cuspidal
representations of Levi subgroups of G. The basic conjecture on this issue
is that if M is a reductive p-adic group (e.g. M is a Levi factor of a
parabolic subgroup of G) then any irreducible super-cuspidal
representation of M is obtained by smooth induction from an irreducible
representation of a subgroup of M which is compact modulo the center of
M. This basic conjecture is now known to be true in many examples.

For Problem 2, the ABPS conjecture proposes that each
Bernstein component @a has a very simple geometric structure.
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Notation
C* denotes the (complex) affine variety C — {0}. J

Definition
A complex torus is a (complex) affine variety T" such that there exists an
isomorphism of affine varieties

T2C*xC*x---xC*.

Paul Baum (Penn State) Geometric Structure September 5, 2014 22 /53



Bernstein assigns to each o € m,Prim(HG) a complex torus T, and a
finite group I, acting on T,.

T, is a complex algebraic group and 3 a non-negative integer r such that
T, as an algebraic group defined over C is (non-canonically) isomorphic to

(C)r:=C* xCX x---xCX. CX:=C-{0}

T,2C*xC*x---xC*

In general, I',, acts on T, not as automorphisms of the algebraic group T,
but only as automorphisms of the underlying complex affine variety T,.
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Bernstein then forms the quotient variety T, /Ty, and proves that there is a
surjective map 7, mapping G,, onto T, /T, .

Gla
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This map 7, is referred to as the infinitesimal character or the central
character or the cuspidal support map.

~
Ga
Ta

To/Ta

T IS surjective, finite-to-one and generically one-to-one.
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T Prim(HG) = {(M,0)}/ ~
Given a cuspidal pair (M, o), let W (M) be the Weyl group of M.

Wa(M) := Ng(M)/M
Bernstein's finite group Iy, is the subgroup of Wg (M) :
Iy :={w € Wg(M)|3an unramified character x of M with w,o ~ x® 0}

Bernstein's complex torus Ty, is a finite quotient of the complex torus
consisting of all unramified characters of M.
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ToPrim(HG) = {(M,0)}/ ~

Given a cuspidal pair (M, o), the Bernstein component @a C G consists
of all irreducible sub-quotients of Ind{;(x ® o) where Ind§, is (smooth)
parabolic induction and x ranges over all the unramified characters of M.

~
Ga
T

T,/Ty

T IS surjective, finite-to-one and generically one-to-one.

Paul Baum (Penn State) Geometric Structure September 5, 2014 27 / 53



Conjecture

Let G be a connected split reductive p-adic group.
Let a € m,Prim(HG) = {(M,0)}/ ~.
Then there is a certain resemblance between

To//Ta Ga
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Conjecture

are almost the same.
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How can this conjecture be made precise?

What does “almost the same” mean?

Let G be a connected split reductive p-adic group.

Let G, be a Bernstein component in the smooth dual of G.
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Let G be a connected split reductive p-adic group.
Let G, be any Bernstein component in G.

Conjecture
There exists a bijection

Vo: To//To @a

with the following properties.
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a € T,Prim(HG)

Within the admissible dual G have the tempered dual @tempered.
@tempered = {smooth tempered irreducible representations of G}/ ~
@tempered = Support of the Plancherel measure

K, = maximal compact subgroup of T,.

K, is a compact torus. The action of I', on T}, preserves the maximal
compact subgroup K, , so can form the compact orbifold K, //T',.

Conjecture : Properties of the bijection v,

@ The bijection vy, : Ty //To < G maps
K,//T, onto @a N @tempered
Ko/fTo < Go N Gremperea
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Conjecture : Properties of the bijection v,

@ For many « the diagram
Vq ~
Ta//Fa — Gy
Pa T

T,/Ty - To/To

does not commute.
I = the identity map of T,,/T,.
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Conjecture : Properties of the bijection v,

@ In the possibly non-commutative diagram
Va ~
Ta//Fa — Gy
Pa o

Ta/Fa T) Ta/Fa

the bijection vy, : T, //Tq — @a is continuous where T, //T',, has

the Zariski topology and G, has the Jacobson topology
AND the composition

Ta OV : Ta//Ta — To/Ta

is a morphism of affine algebraic varieties.

Paul Baum (Penn State) Geometric Structure September 5, 2014 34 /53



Conjecture : Properties of the bijection v,

e For each o € m,Prim(HG) there is an algebraic family

0 : To//To — To/Ta

of morphisms of algebraic varieties, with t € C*, such that

01 = pa and Gﬁ:waoua

C*=C-{0}

g = order of the residue field of the p-adic field F' over which G is
defined

T, = infinitesimal character of Bernstein
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Conjecture : Properties of the bijection v,

e Fix o € m,Prim(HG). For each irreducible component Z C T,,//T,
(Z is an irreducible component of the affine variety 7, //T)
there is a cocharacter

hy :C* — T,
such that

Oi(x) = A(hz(t) - )
forall z € Z.

cocharacter = homomorphism of algebraic groups C* — T,
A: T, — T,/T, is the usual quotient map from T, to T, /I',,.
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Question
Where are these correcting co-characters coming from?

Answer

In examples, the correcting co-characters are produced by the SL(2,C)
part of the Langlands parameters.

Wr x SL(2,C) — LG
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Example

G =GL(2,F)

F' can be any finite extension of the p-adic numbers Q,.

q denotes the order of the residue field of F.

G = { Smooth irreducible representations of GL(2, F) having a non-zero
lwahori fixed vector}

v

T, = {unramified characters of the maximal torus of GL(2, F')}
=C* x C~

I’y = the Weyl group of GL(2,F) =7Z/2Z
0#y€Z/2Z  ~(C1,¢2) = (¢2,€C1) (C1, () € CX x CX

(C* x C)//(z/22) = (C* x C*)/(Z/22Z) |] C*
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(C* % C*)//(z/22) = (C* x C*)/(2/22) || C*

(C*xC*)/(zZ)2Z)

Locus of reducibility

{¢1, 2} such that

(GGG Y ={a.a7 !}

{¢1, 2} such that

G =0

correcting cocharacter CX — C* x C* is t +— (t,t71)
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Infinitesimal
character

Projection of the
extended quotient on
the ordinary quotient

@ —mm
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Method for proving the local Langlands conjecture

a € T,Prim(HG)

To//Ta

e

Go ({Langlands parameters}/*G).,
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Method for proving the local Langlands conjecture

a € T,Prim(HG)

To//Ta

ST

@a ({enhanced Langlands parameters}/‘G),
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Theorem 1 (Aubert-Baum-Plymen-Solleveld)

Let G be a connected split reductive p-adic group, and let @a be a
Bernstein component of G which is in the principal series of G. Then
(granted a mild restriction on the residual characteristic of the p-adic field
F over which G is defined) the ABPS conjecture is valid for Gq.

@a A Ta//ra
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Theorem 1 (Aubert-Baum-Plymen-Solleveld)

Let G be a connected split reductive p-adic group, and let @a be a
Bernstein component of G which is in the principal series of G. Then
(granted a mild restriction on the residual characteristic of the p-adic field
F over which G is defined) the ABPS conjecture is valid for Gq.

@a A Ta//ra
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a € T,Prim(HG)

To//Ta

e

@a ({enhanced Langlands parameters}/‘G),

Left arrow : representation theory of affine Hecke algebras.

Right arrow : Springer correspondence.
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QUESTION. In the ABPS view of G, what are the L-packets?

CONJECTURAL ANSWER. Fix a € m,Prim(HG). In the list

h1, ho, ..., h, of correcting cocharacters

(one hy; for each irreducible component of the affine variety T, //T',)
there may be repetitions — i.e. it may happen that for ¢ # j, h; = h;.
It is these repetitions that give rise to L-packets.
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Fix @ € m,Prim(HG). Let

Z1,%Z3,...,Zy be the irreducible components of the affine variety 7,,//T .

Let hi, ha,..., h, be the correcting cocharacters.
Let vy : T//Ta — Gq be the bijection of ABPS.

CONJECTURE. Two points [(v,t)], [(7/,t)] have
val(7,t)] and v, [(7/, )] are in the same L — packet

if and only if

hi = h; where [(v,)] € Z; and [(7/, )] € Z;

and
C; = Cj

and
For all 7 € C*, 0;[(v,t)] = 97[(7',15’)]
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WARNING. An L-packet might have non-empty intersection with more
than one Bernstein component. The conjecture does not address this
issue. The statement of the ABPS conjecture begins

Fix a € m,Prim(HG).
So the ABPS conjecture assumes that a Bernstein component has been

fixed — and then describes the intersections of L-packets with this
Bernstein component.
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Example

G=SL(2,F)

F' can be any finite extension of the p-adic numbers Q,.

q denotes the order of the residue field of F.

G = { Smooth irreducible representations of GL(2, F) having a non-zero
lwahori fixed vector}

v

T, = {unramified characters of the maximal torus of SL(2, F')}
= C*

I'y = the Weyl group of SL(2,F) =7/2Z
0#£y€Z/2Z  ~(¢)=("" (ecx

C(2)22) = C)(Z/2Z) || o || e
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Infinitesimal Projection of the

character extended quotient on
the ordinary quotient
° ° ° °

11} {0 11 (L

Correcting cocharacter is ¢ — t2.

Preimage of {—1, —1} is an L-packet.
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Summary.

The extended quotient T, //T'y, is (conjecturally) slightly non-canonically
in bijection with the Bernstein component G, and thus provides a setting

in which precise book-keeping can be done for L-packets and correcting
cocharacters.
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Wiggly arrow indicates
“There is some interaction between the two conjectures.”

Baum-Connes

ABPS

Local Langlands
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Theorem (V. Lafforgue)

Baum-Connes is valid for any reductive p-adic group G.

Theorem (Harris and Taylor, G.Henniart)
Local Langlands is valid for GL(n, F).

Theorem (R. Plymen and J. Brodzki)
ABPS is valid for GL(n, F).
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