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Local-global compatibility for ramified primes

[la Varma

August 18, 2014

Local-global compatibility characterizes the Global Langlands correspondence in terms of
the Local Langlands correspondence at each prime. Today I will discuss this compatibility
statement in general as well as in the new instances of Global Langlands proved by Harris-

Lan-Taylor-Thorne and Scholze.

Local Langlands correspondence for GL,

Let F' be a number field, p a rational prime, v a place of ' over the rational prime ¢ s.t.
v 1 p. For the sake of this lecture, assume v splits over F'*. The Weil group will be denoted

Wg, C Gal(F,/F,). We will denote Weil-Deligne representations of W, as triples (r, V, N)

where 7 : Wg, — GL(V) and N is the monodromy operator.

We say (r,V,N) is Frobenius semisimple iff r is semisimple, and we say (r,V, N) is
semisimple iff r is semisimple and N = 0.

It is a theorem of Grothendieck that continuous p-adic Galois representations of Wy, can
be encoded as Weil-Deligne representations when v { p, and this is the language used in

stating the Local Langlands correspondence. We can now state the bijection of the Local

Langlands correspondence.



Theorem 1 (Harris-Taylor, Henniart). There is a bijection between

{irreducible smooth rep’s of GL,(F,) over C} «— {Frob-s.s. WD repns of Wg, over C}

For example, principal series associated to two characters of F* whose quotient is not
equal to the norm or its inverse has Weil-Deligne representation equal to the direct sum of

these characters with N = 0.

Global Langlands conjecture

We will use LLC in our description of the Global Langlands correspondence. Fix ¢ : C = @p

Conjecture 1 (Langlands, Fontaine-Mazur). There should be a bijection

{algebraic cuspidal aut. rep’ns of GL,(Ar)} +— { irred. cts. Galois rep'ns Gp — GLn(Qy) }

unram. at almost all places and de Rham at p

Note that cuspidal corresponds to irreducible. Algebraic is a condition at the infinite
places, namely that the infinitesimal character has integral Harish-Chandra parameters.
This corresponds to the de Rham at p condition, which can be thought of as the condition

that the representation comes from geometry (at least conjecturally).

The above bijection should satisfy the following being equivalent:

1. Starting with 7 = @] m,, restrict to m, and apply local Langlands after a specified
normalization, namely

rec(m, ® | det [(177)/2)

2. Starting with =, take the corresponding (global) Galois representation R,(7) : Gp —
GL,(Q,), restrict to Gr, and apply Grothendieck’s WD.
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In other words, we want m — R,(7) to satisfy
WD( Ry (7|, )% =0 rec(m, ® [ det |T0/2). (x)

The above statement is what’s referred to as Local-Global compatibility.

1 Recent new instances of Global Langlands

Theorem 2 (Harris-Lan-Taylor-Thorne, Scholze). Assume F is CM or totally real, and
assume that m is a regular algebraic cuspidal automorphic representation of GL, (Ar). (Note
that reqular algebraic is the added condition that the Harish-Chandra parameters are distinct).
Then there exists Ry() : Gr — GL,(Q,) such that at places of F not above p for which

both F' and m are unramified,
WD(Ry(7)lg,, )" 20 rec(m, @ [det |77/2). (%)

In this case, note that the statement of local-global compatibility is just about the image
of Frobenius, and N = 0. Note that previous to these results, one needed to further assume

conjugate self-duality, namely that 7 = 7%V,

The strengthened local-global compatibility result is:

Theorem 3 (V). For all primes 1 p,
WD( Ry (7], )** =0 rec(m, @ | det [17772). (%)

Remark. 1. The statement above ignores N completely. In fact, we can “bound” N on the

Galois side by N on the automorphic side.



2. We can further prove that R,(m) is de Rham.

Argument

We will now p-adically interpolate Galois representations associated to those 7’ satisfying
7' = (") to get Galois representations for general RAC 7 that are not necessarily conjugate

self-dual. Start with such a 7 on GL,,.

Denote by G = GU(n,n) the quasisplit unitary similitude group associated to F?* and

0 1, X %
alternating form . It has parabolic P = GL; x with Levi L =
-1, O 0 x*
* 0
GL; x . However, note that L = GL; x ng GL,,.
0 =*

For all M sufficiently large positive integer, let

GU(n,n) (AP oo
I(M) = Indg 50" (1 x (r @ || det [[M)).

Its base-change to GLa,, will look like (7®||det ||M)®(r® || det ||M)*Y away from infinity (and
p). HLTT prove that IT1(M) is a subquotient of a space of overconvergent p-adic automorphic

forms of GU(n,n). We now introduce such a space.

2 Some compactifications

Let Xy be the Shimura variety associated to GU(n,n) and some neat open compact U. For

the sake of this talk, assume it is prime-to-p level structure.

Now let XT™ be an integral model of the minimal compactification of X It is a normal

projective flat scheme defined over Z,. Thus, there is an ample line bundle, wy whose



pullback to Xy is identified with the determinant of the Hodge bundle. Over [, it has a

canonical global section Hassey such that

g« Hasse = Hasse Vg € GU(n,n)(AP™>)

Kai-Wen Lan has constructed a normal quasi-projective scheme over Z, which is a partial
minimal compactification of the ordinary locus Xy, denoted X7"™". Over I, this coincides

with the nonzero locus of Hasse.

For any algebraic representation p of L of highest weight u, let SZ“b = Sjub denote the
subcanonical extension of the automorphic vector bundle associated to p on AF". Tt is
constructed as the pushforward of the canonical extension £ ® Zyx, ,, from a toroidal

compactification of Xy that maps to A",

The space of p-adic automorphic forms of weight y is then H°(xminord, €Zub).

Proposition 4 (HLTT). II(M) € HO(X™™4 £%) for some non-classical jig and has finite

slope.

The analogue in GLs of this space is H(X;(N )4, w®* (—cusps)), where k is negative. In
particular, we don’t expect to find any classical automorphic forms of weight pg, i.e. we
expect

HO(Xmin gsub> = 0.

7T 1o

If 1 is satisfies a “classicality condition” (analogous to k > 2), then H(X™™, £3") consists
of classical cuspidal automorphic representations II" whose base change to GLy, satisfies

BC(IT") = BC(IT")*Y, i.e. are conjugate self-dual. With this added condition,

Proposition 5 (Chenevier-Harris,Shin, BLGHT ,CHT,TY,Caraiani). Associated to each IT’,



there exists a Galois representation,

Rp(H,) : GF — GLQn(@p)

satisfying full local-global compatibility, i.e.

WD (r,(I1)| &, )F=58 = rec(BC(IT) ® | det |(172M/2),
Furthermore, there is a representation S := A™F@ StdY whose highest weight is w =
(0,(—1,...,-1)), and we have the relation that

sub __ esub
g#o Qwy = gﬂo+w'

We can canonically lift a power of Hasse from I, to Z,), and this allows us to define a

map for every positive integer K

HO()(min ESUb K*I(p_1).w) SN HO(;(ord,min gsub ® Z/pKZ)

> T po+p 7 ¥ 1o

f= flo /Ha~sse.

The p-adic interpolation result then tells us that if we sum over all multiples of p~*(p —
1), then every p-adic automorphic form mod p® has a preimage in the space of classical

automorphic forms, i.e.

Proposition 6 (HLTT). For all v and for all K positive integers

@ HO(/Ymin7 gzgiijil(p_l)'w> N HO(xmin,ord’ EZEb ® Z/pKZ)
Jj=r



In GLo, when one has g-expansions, the analogue is: If f is a weight k overconvergent

eigenform with £ < 0, then there exist classical eigenforms g; of weight k; > 2 such that
f = g; modp’ where k; = k+ j(p—1)

Now we will use the theory of pseudocharacters and carefully chosen Hecke operators to
get a representation associated to II(M) as a p-adic limit of representations r,(II") for various

classical GU (n, n)-automorphic representations IT".

Unramified case

Here, there exist integral Hecke operators T;, (analogue of T}, in GL) inside Z[G(Z)\G(Qy) /G (Zy)]

(here, v | £) which by Satake have eigenvalue on classical I’
trrec(BC(IT,) ® | det |1=2"/2)(Frob,) = tr R,(II')** (Frob,),

because II' is conjugate self-dual, and we already have LGC for such R,(II').

The ramified case

The Bernstein center for GLo, is

dug, = E%Z«@JD[K\ GLan(Fy)/K]),

It is commutative, and Bernstein showed the existence of various idempotents ey such that
the image 3, = ex3,,0, maps into the endomorphism algebras of the spaces of p-adic and

classical automorphic forms we’ve dealt with thus far. In 3,, Chenevier provides us with



Hecke operators Ty, , inside the Bernstein center where o € Wp,, whose eigenvalue on classical
H/
trrec(BC(IT,) @ | det |1 72"/2) () = tr WD(R,(IT'))* (o).

These Hecke operators live in a Hecke algebra defined over some finite extension of Q,, and
we take scalar multiples if necessary to see these Hecke operators as Z,-endomorphisms of

whichever HY space.

Pseudocharacters

Let

1 = R) ZIG(Z)\G(Q)/C(Ze)) @ R) 30z,

unr. £ ram. ¢
and let T? denote the image in Endg, (H°(X™", £)). If u satisfies the classicality con-
dition, then by the existence of Galois representations, we see that there is a continuous
pseudocharacter

T:Gp— ']I‘ﬁ Frob, =T, o=1,,.

If TOXP denotes the image of #? in Endg, (H (X", £ @7, /p" 7)), then by the p-adic

interpolation result, we can patch together a pseudocharacter

T Gp — TOM  Frob, = T, o~ T,,.

For II(M), there is a map ']I'ng’p — @p sending Hecke operators to their eigenvalues on



II(M)Y, thus we then get

Tﬁ(rji/[) :Gr —Q, Frob,  trrec(BC(w(M), @ | det |*=2"/2))(Frob,)

o+ trrec(BC(m(M), ® | det |172M/2)) (o)
Thus by the theory of pseudocharacters, we get a Galois representation
rp(m(M)) : G — GL2a(Q,)
satisfying for all unramified primes

WD(ry(m(M))lg, )" = rec(BC(m(M),) ® | det |(1=2m)/2)

=~ o roe(m, ® | det | 2) @ (17 rec(me, | dot |1/ ek -2,

since BCO(m(M)) = (7 ® || det |[|M) @ (7 @ || det || M)V
Because we have constructed the above representations for all sufficiently large M, it is

now just group theory to isolate the n-dimensional guys.
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