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These are the notes from my talk in Essen in June 2014.

1. The BSD conjecture

Let E be an elliptic curve over Q, so E(Q) ∼= ∆ × ZrE , where ∆ is a finite torsion group and rE ≥ 0.
Let L(E, s) be the L-function of E, which is defined as an infinite product of local terms (one for each
prime p). The product is known to converge for <(s) > 3

2 .

Theorem 1.1. (Wiles, Breuil-Conrad-Diamond-Taylor) L(E, s) has analytic continuation to C.

The BSD conjecture predicts that L(E, s) contains global information of E:

Conjecture 1.2. • ords=1 L(E, s) = rE;
• There is an explicit formula for the leading term at s = 1 in terms of the global arithmetic

invariants of E, e.g. the order of the group X(E/Q) (which is conjectured to be finite).

We are interested in the following generalisation: let ρ be an Artin representation of GQ = Gal(Q/Q)
factoring through a finite extension F of Q, and assume that ρ is odd and 2-dimensional. One can then
define L(E, ρ, s), and it is known that this L-function has analytic continuation to C.

Conjecture 1.3. (BSDρ) ords=1 L(E, ρ, s) = rankE(F )[ρ]

Back to the original BSD conjecture. One of the strongest results in this direction is due to Kolyvagin
and Kato [Kat04]:

Theorem 1.4. If L(E, 1) 6= 0, then rE = 0 and X(E/Q)[p∞] is finite for almost all p.

Kato’s strategy consists of three parts:

(1) make the problem p-adic: let TpE = lim←−E(Q)[pn], and define VpE = TpE ⊗Zp
Qp. This is a

p-adic representation of GQ: it is a finite-dimensional Qp-vector space with a continuous action
of GQ. One can hence consider the frst Galois cohomology group H1(Q, VpE) = H1(GQ, VpE).
This group contains the Selmer group Sel(Q, VpE) which has two important properties:
• E(Q)⊗Qp ↪→ Sel(Q, VpE);
• the quotient is related to X(E/Q)[p∞].

To prove the theorem, it is hence sufficient to show that if L(E, 1) 6= 0, then Sel(Q, VpE) = 0.
(2) construct an Euler system (ES) for VpE, which is a collection of classes (zm)m≥1, zm ∈ H1(Q(µm), VpE),

satisfying certain compatibility relations (the Euler system norm relations) under the Galois
corestriction maps. This ES is related to the value L(E, 1): there exists a linear functional (the
Bloch-Kato dual exponential map)

exp∗ : H1(Qp, VpE) - Qp,

and one can show that exp∗(z1) = L(E,1)
Ω for some period Ω.

(3) use duality theorem from global Galois cohomology to show

exp∗(z1) 6= 0 ⇒ Sel(Q, VpE) = 0.

(For this implication to hold, one needs to existence of the whole Euler system, and not just the
existence of the class Z1.)

The aim of this talk is to prove the analogue of this result for BSDρ, following Kato’s strategy.
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2. Euler systems

Definition. (Rubin, [Rub00]) Let K be a number field, and let V be a p-adic representation of GK .
Assume that V is unramified outside a finite set of primes Σ which contains all the primes above p. An
ES for (K,V ) is a collection of classes (zm), zm ∈ H1(K(m), V ∗(1)), indexed by the integral ideals of K
(K(m) denotes the ray class field (mod m)), satisfying the following conditions:

• zm lands in a fixed lattice of V ∗(1), independent of m;

• (Euler system norm relations) cores
K(`m)
K(m) =

{
zm if `|m or ` ∈ Σ

P`(σ
−1
` )zm otherwise

where σ` is the arith-

metic Frobeinus at ` and P`(X) = det(1− σ−1
` X|V ) is the Euler factor at `.

Theorem 2.1. (Rubin) If z1 6= 0, then we get a bound for Sel(K,V ) (or related Selmer groups with
slightly different local conditions at p)/

Remark. • We need to consider V ∗(1) because of global duality theorems.
• In the case V = VpE, we have V ∼= V ∗(1).

Conjecture 2.2. A non-zero Euler system should exist whenever V comes from geometry.

Despite this conjecture, the list of known Euler systems is rather short:

• cyclotomic units: K = Q, V = Q;
• elliptic units: K imag. quad., V = Q;
• Kato’s Euler system: K = Q, V = VpE or Vpf , where f is a modular form of weight ≥ 2;
• Heegner points/Heegner cycles: K imag. quad. or CM, V = VpE

Here is a new one:

Theorem 2.3. (Lei-Loeffler-Zerbes [LLZ14], Kings-Loeffler-Zerbes [KLZ14]) Let f, g be modular forms
of weights k + 2, k′ + 2 ≥ 2, levels Nf , Ng. Let 0 ≤ j ≤ min{k, k′}, and define V = Vpf ⊗ Vpg(1 + j).
Then there exist classes

BF(f,g,j)
n ∈ H1(Q(µn), V ∗(1))

satisfying Euler system like relations under the corestriction maps maps.

This Euler system is related to L-values: one can show that BF
(f,g,j)
1 ∈ ker(exp∗BK), but if p - mNfNg,

then

logBK(BF
(f,g,j)
1 ) = (?)Lp(f, g, 1 + j),

where Lp(f, g) is Hida’s Rankin-Selberg p-adic L-function.

Remark. • This formula was proved by Bertolini-Darmon-Rotger in the case when k = k′ = j = 0.

• We have a similar formula for the image of BF
(f,g,j)
1 under the complex regulator, which was

proven independently by Brunault-Chida.

3. Idea of construction

Suppose that k = k′ = j = 0. The geometric input is the Siegel unit

g 1
m2N

∈ O(Y1(m2N))× = H1
Mot(Y1(m2N,Q(1))).

Let ιm,N : Y1(M2N)→ Y1(N)2 denote the map given on H by z 7→
(
z, z + 1

m

)
; observe that this map is

defined over Q(µm). Pushforward of g 1
m2N

along ιm,N gives a class in H3
Mot(Y1(N)2 × µm,Q(2)).

Via the p-adic étale regulator and the Hochschild-Serre spectral sequence we obtain an element in

H1
(
Q(µm), H2

et

(
Y1(N)

2
,Qp(2)

))
. If f and g are eigenforms of weight 2, levels Nf , Ng dividing N ,

project from Y1(N)2 into Y1(Nf ) × Y1(Ng) and then into the (f̄ , ḡ)-isotypical component to obtain the

element BF(f,g,0)
m ∈ H1(Q(µm), V ∗f × V ∗g ).
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For mudular forms of heigher weight, we replace g 1
m2N

by a motivic Eisenstein symbol (c.f. [Kin13])

Eiskm2N ∈ H1
Mot

(
Y1(m2N),SymkHQ(1)

)
,

whee H is the relative cohomology sheaf of the universal elliptic curve over Y1(m2N). If k, k′ ≥ 0,

0 ≤ j ≤ min{k, k′}, then there exists a map to take Eisk+k′−2j
m2N into

H3
Mot

(
Y1(N)2 × µm,SymkHQ � Symk′ HQ(2− j)

)
.

Roughly, this map is composition of ιm,N with the Clebsch-Gordan decomposition.

4. A 3-variable Euler system

Recall that we want to construct an Euler system for V = VpE(ρ), where ρ is a 2-dimensional odd Artin
representation of GQ. However:

• E corresponds to a modular form of weight 2;
• ρ corresponds to a modular form of weight 1.

Hence Theorem 2.3 does not apply! In order to get around this, we use p-adic deformation.

Let F , G be Hida families of tame levels NF , NG , so they are maximal ideals of ordinary Hecke algebras.
Let ΛF , ΛG be the corresponding localisations of the Hecke algebras, and let MF and MG denote the
Λ-adic representations attached to F and G. Also, let Γ = Gal(Q(µp∞)/Q).

Theorem 4.1. (Kings-Loeffler-Zerbes [KLZ14]) For all m ≥ 1, not divisible by p, there exists a class

BF(F,G)
m ∈ H1

(
Q(µm),M∗F ⊗̂M∗G⊗̂Λ(Γ)

)
satisfying the following conditions:

(1) they satisfy Euler system like relations under the corestriction maps;
(2) if f, g in F ,G are of weights k + 2, k′ + 2 ≥ 2 and 0 ≤ j ≤ min{k, k′}, then the specialisation of

BF(F,G)
m at (f, g, j) recovers the element BF(f,g,j)

m constructed in Theorem 2.3 up to some Euler
factors;

(3) these points are dense in the Hida families, so we get a relation to L-values everywhere in the
families, even at critical specialisations.

Remark. (2) is proven directly in étale cohomology. The variation in k, k′ reduces to a compatibility
on Y1(N) for Eisenstein classes, which was proven by Kings in [Kin13]. The variation in j reduces to
variation in k, k′ by a geometric argument.

5. Application to BSDρ

Let E be an elliptic curve corresponding to a modular form f , and let ρ be an odd 2-dimensional Artin
representation corresponding to a mdoular form g. Assume that f and g are ordinary at p (which
is automatic for g). Let F and G be Hida families through f and g. Consider the Euler system(

BF(F,G)
m

)
m

and specialize it at (f, g, 0). We obtain an Euler system for VpE(ρ) related to the critical

L-value L(E, ρ, 1). Applying Rubin’s Euler system machine, we obtain the following result:

Theorem 5.1. (Kings-Loeffler-Zerbes [KLZ14]) Let p ≥ 5, assume that E does not have complex multi-
plication and that E is ordinary at p. Suppose that ρ factors through F . If some technical hypotheses are
hold (one can show that they are satisfied for infinitely many p) and L(E, ρ, 1) 6= 0, then rankE(F )[ρ] = 0
and the p-primary part of X(E/Q)[ρ] is finite.

Remark. • The fact that L(E, ρ, 1) 6= 0 implies rankE(F )[ρ] = 0 was first proven by Bertolini-
Darmon-Rotger in [BDR14] via a different method.

• It is work in progress (jointly with Kings and Loeffler) to show that we can remove the hypothesis
that E be ordinary at p, i.e. we can replace Hida families by Coleman families.
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117–290, Cohomologies p-adiques et applications arithmétiques. III. MR 2104361
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