EULER SYSTEMS AND THE BIRCH-SWINNERTON-DYER CONJECTURE

GUIDO KINGS / ANTONIO LEI / DAVID LOEFFLER / SARAH ZERBES

These are the notes from my talk in Essen in June 2014.

1. The BSD conjecture

Let E be an elliptic curve over \mathbb{Q} , so $E(\mathbb{Q}) \cong \Delta \times \mathbb{Z}^{r_E}$, where Δ is a finite torsion group and $r_E \geq 0$. Let L(E,s) be the L-function of E, which is defined as an infinite product of local terms (one for each prime p). The product is known to converge for $\Re(s) > \frac{3}{2}$.

Theorem 1.1. (Wiles, Breuil-Conrad-Diamond-Taylor) L(E, s) has analytic continuation to \mathbb{C} .

The BSD conjecture predicts that L(E, s) contains global information of E:

- $\operatorname{ord}_{s=1} L(E,s) = r_E;$ Conjecture 1.2.
 - There is an explicit formula for the leading term at s = 1 in terms of the global arithmetic invariants of E, e.g. the order of the group $\operatorname{III}(E/\mathbb{Q})$ (which is conjectured to be finite).

We are interested in the following generalisation: let ρ be an Artin representation of $G_{\mathbb{Q}} = \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ factoring through a finite extension F of \mathbb{Q} , and assume that ρ is odd and 2-dimensional. One can then define $L(E, \rho, s)$, and it is known that this L-function has analytic continuation to \mathbb{C} .

Conjecture 1.3. $(BSD_{\rho}) \operatorname{ord}_{s=1} L(E, \rho, s) = \operatorname{rank} E(F)[\rho]$

Back to the original BSD conjecture. One of the strongest results in this direction is due to Kolyvagin and Kato [Kat04]:

Theorem 1.4. If $L(E,1) \neq 0$, then $r_E = 0$ and $\operatorname{III}(E/\mathbb{Q})[p^{\infty}]$ is finite for almost all p.

Kato's strategy consists of three parts:

- (1) make the problem *p*-adic: let $T_p E = \lim_{n \to \infty} E(\overline{\mathbb{Q}})[p^n]$, and define $V_p E = T_p E \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. This is a p-adic representation of $G_{\mathbb{Q}}$: it is a finite-dimensional \mathbb{Q}_p -vector space with a continuous action of $G_{\mathbb{Q}}$. One can hence consider the first Galois cohomology group $H^1(\mathbb{Q}, V_p E) = H^1(G_{\mathbb{Q}}, V_p E)$. This group contains the Selmer group $Sel(\mathbb{Q}, V_p E)$ which has two important properties:
 - $E(\mathbb{Q}) \otimes \mathbb{Q}_p \hookrightarrow \operatorname{Sel}(\mathbb{Q}, V_p E);$
 - the quotient is related to $\operatorname{III}(E/\mathbb{Q})[p^{\infty}]$.
 - To prove the theorem, it is hence sufficient to show that if $L(E, 1) \neq 0$, then $Sel(\mathbb{Q}, V_p E) = 0$.
- (2) construct an Euler system (ES) for $V_p E$, which is a collection of classes $(z_m)_{m\geq 1}, z_m \in H^1(\mathbb{Q}(\mu_m), V_p E)$, satisfying certain compatibility relations (the Euler system norm relations) under the Galois correstriction maps. This ES is related to the value L(E, 1): there exists a linear functional (the Bloch-Kato dual exponential map)

$$\exp^*: H^1(\mathbb{Q}_p, V_p E) \longrightarrow \mathbb{Q}_p,$$

and one can show that $\exp^*(z_1) = \frac{L(E,1)}{\Omega}$ for some period Ω . (3) use duality theorem from global Galois cohomology to show

$$\exp^*(z_1) \neq 0 \qquad \Rightarrow \qquad \operatorname{Sel}(\mathbb{Q}, V_p E) = 0.$$

(For this implication to hold, one needs to existence of the whole Euler system, and not just the existence of the class Z_1 .)

The aim of this talk is to prove the analogue of this result for BSD_{ρ} , following Kato's strategy.

2. Euler systems

Definition. (Rubin, [Rub00]) Let K be a number field, and let V be a p-adic representation of G_K . Assume that V is unramified outside a finite set of primes Σ which contains all the primes above p. An ES for (K, V) is a collection of classes $(z_{\updownarrow}), z_{\updownarrow} \in H^1(K(\updownarrow), V^*(1))$, indexed by the integral ideals of K $(K(\)$ denotes the ray class field (mod $\)$), satisfying the following conditions:

- z_{\uparrow} lands in a fixed lattice of $V^*(1)$, independent of \uparrow ;
- (Euler system norm relations) $\operatorname{cores}_{K(\mathfrak{q})}^{K(\ell\mathfrak{q})} = \begin{cases} z_{\mathfrak{q}} & \text{if } \ell | \mathfrak{q} \text{ or } \ell \in \Sigma \\ P_{\ell}(\sigma_{\ell}^{-1}) z_{\mathfrak{q}} & \text{otherwise} \end{cases}$ where σ_{ℓ} is the arithmetic Frobeinus at ℓ and $P_{\ell}(X) = \det(1 \sigma_{\ell}^{-1}X|V)$ is the Euler factor at ℓ .

Theorem 2.1. (Rubin) If $z_1 \neq 0$, then we get a bound for Sel(K,V) (or related Selmer groups with slightly different local conditions at p)/

Remark. • We need to consider $V^*(1)$ because of global duality theorems.

• In the case $V = V_p E$, we have $V \cong V^*(1)$.

Conjecture 2.2. A non-zero Euler system should exist whenever V comes from geometry.

Despite this conjecture, the list of known Euler systems is rather short:

- cyclotomic units: $K = \mathbb{Q}, V = \mathbb{Q};$
- elliptic units: K imag. quad., $V = \mathbb{Q}$;
- Kato's Euler system: $K = \mathbb{Q}, V = V_p E$ or $V_p f$, where f is a modular form of weight ≥ 2 ;
- Heegner points/Heegner cycles: K imag. quad. or CM, $V = V_p E$

Here is a new one:

Theorem 2.3. (Lei-Loeffler-Zerbes [LLZ14], Kings-Loeffler-Zerbes [KLZ14]) Let f, g be modular forms of weights $k + 2, k' + 2 \ge 2$, levels N_f , N_g . Let $0 \le j \le \min\{k, k'\}$, and define $V = V_p f \otimes V_p g(1+j)$. Then there exist classes

$$\mathrm{BF}_n^{(f,g,j)} \in H^1(\mathbb{Q}(\mu_n), V^*(1))$$

satisfying Euler system like relations under the corestriction maps maps.

This Euler system is related to L-values: one can show that $\mathrm{BF}_{1}^{(f,g,j)} \in \ker(\exp_{\mathrm{BK}}^{*})$, but if $p \nmid mN_{f}N_{g}$, then

$$\log_{\rm BK}({\rm BF}_1^{(f,g,j)}) = (\star)L_p(f,g,1+j),$$

where $L_p(f,g)$ is Hida's Rankin-Selberg *p*-adic *L*-function.

• This formula was proved by Bertolini-Darmon-Rotger in the case when k = k' = j = 0. • We have a similar formula for the image of BF₁^(f,g,j) under the complex regulator, which was Remark.

proven independently by Brunault-Chida.

3. Idea of construction

Suppose that k = k' = j = 0. The geometric input is the Siegel unit

$$g_{\frac{1}{m^2N}} \in O(Y_1(m^2N))^{\times} = H^1_{Mot}(Y_1(m^2N, \mathbb{Q}(1)))$$

Let $\iota_{m,N}: Y_1(M^2N) \to Y_1(N)^2$ denote the map given on \mathcal{H} by $z \mapsto (z, z + \frac{1}{m})$; observe that this map is defined over $\mathbb{Q}(\mu_m)$. Pushforward of $g_{\frac{1}{m^2N}}$ along $\iota_{m,N}$ gives a class in $H^3_{Mot}(Y_1(N)^2 \times \mu_m, \mathbb{Q}(2))$.

Via the *p*-adic étale regulator and the Hochschild-Serre spectral sequence we obtain an element in $H^1\left(\mathbb{Q}(\mu_m), H^2_{\text{et}}\left(\overline{Y_1(N)}^2, \mathbb{Q}_p(2)\right)\right)$. If *f* and *g* are eigenforms of weight 2, levels N_f , N_g dividing *N*, project from $Y_1(N)^2$ into $Y_1(N_f) \times Y_1(N_g)$ and then into the (\bar{f}, \bar{g}) -isotypical component to obtain the element $\mathrm{BF}_m^{(f,g,0)} \in H^1(\mathbb{Q}(\mu_m), V_f^* \times V_g^*)$. For mudular forms of heigher weight, we replace $g_{\frac{1}{m^2N}}$ by a motivic Eisenstein symbol (c.f. [Kin13])

$$\operatorname{Eis}_{m^{2}N}^{k} \in H^{1}_{\operatorname{Mot}}\left(Y_{1}(m^{2}N), \operatorname{Sym}^{k}\mathcal{H}_{\mathbb{Q}}(1)\right),$$

whee \mathcal{H} is the relative cohomology sheaf of the universal elliptic curve over $Y_1(m^2N)$. If $k, k' \ge 0$, $0 \le j \le \min\{k, k'\}$, then there exists a map to take $\operatorname{Eis}_{m^2N}^{k+k'-2j}$ into

$$H^3_{\mathrm{Mot}}\left(Y_1(N)^2 \times \mu_m, \operatorname{Sym}^k \mathcal{H}_{\mathbb{Q}} \boxtimes \operatorname{Sym}^{k'} \mathcal{H}_{\mathbb{Q}}(2-j)\right).$$

Roughly, this map is composition of $\iota_{m,N}$ with the Clebsch-Gordan decomposition.

4. A 3-VARIABLE EULER SYSTEM

Recall that we want to construct an Euler system for $V = V_p E(\rho)$, where ρ is a 2-dimensional odd Artin representation of $G_{\mathbb{Q}}$. However:

- *E* corresponds to a modular form of weight 2;
- ρ corresponds to a modular form of weight 1.

Hence Theorem 2.3 does not apply! In order to get around this, we use *p*-adic deformation.

Let \mathcal{F}, \mathcal{G} be Hida families of tame levels $N_{\mathcal{F}}, N_{\mathcal{G}}$, so they are maximal ideals of ordinary Hecke algebras. Let $\Lambda_{\mathcal{F}}, \Lambda_{\mathcal{G}}$ be the corresponding localisations of the Hecke algebras, and let $M_{\mathcal{F}}$ and $M_{\mathcal{G}}$ denote the Λ -adic representations attached to \mathcal{F} and \mathcal{G} . Also, let $\Gamma = \text{Gal}(\mathbb{Q}(\mu_{p^{\infty}})/\mathbb{Q})$.

Theorem 4.1. (Kings-Loeffler-Zerbes [KLZ14]) For all $m \ge 1$, not divisible by p, there exists a class

$$\mathrm{BF}_{m}^{(\mathcal{F},\mathcal{G})} \in H^{1}\left(\mathbb{Q}(\mu_{m}), M_{\mathcal{F}}^{*}\hat{\otimes}M_{\mathcal{G}}^{*}\hat{\otimes}\Lambda(\Gamma)\right)$$

satisfying the following conditions:

- (1) they satisfy Euler system like relations under the corestriction maps;
- (2) if f, g in \mathcal{F}, \mathcal{G} are of weights $k + 2, k' + 2 \ge 2$ and $0 \le j \le \min\{k, k'\}$, then the specialisation of $\operatorname{BF}_m^{(\mathcal{F},\mathcal{G})}$ at (f, g, j) recovers the element $\operatorname{BF}_m^{(f,g,j)}$ constructed in Theorem 2.3 up to some Euler factors;
- (3) these points are dense in the Hida families, so we get a relation to L-values everywhere in the families, even at critical specialisations.

Remark. (2) is proven directly in étale cohomology. The variation in k, k' reduces to a compatibility on $Y_1(N)$ for Eisenstein classes, which was proven by Kings in [Kin13]. The variation in j reduces to variation in k, k' by a geometric argument.

5. Application to BSD_{ρ}

Let E be an elliptic curve corresponding to a modular form f, and let ρ be an odd 2-dimensional Artin representation corresponding to a modular form g. Assume that f and g are ordinary at p (which is automatic for g). Let \mathcal{F} and \mathcal{G} be Hida families through f and g. Consider the Euler system $\left(\mathrm{BF}_{m}^{(\mathcal{F},\mathcal{G})}\right)_{m}$ and specialize it at (f,g,0). We obtain an Euler system for $V_{p}E(\rho)$ related to the critical L-value $L(E,\rho,1)$. Applying Rubin's Euler system machine, we obtain the following result:

Theorem 5.1. (Kings-Loeffler-Zerbes [KLZ14]) Let $p \ge 5$, assume that E does not have complex multiplication and that E is ordinary at p. Suppose that ρ factors through F. If some technical hypotheses are hold (one can show that they are satisfied for infinitely many p) and $L(E, \rho, 1) \ne 0$, then rank $E(F)[\rho] = 0$ and the p-primary part of $\operatorname{III}(E/\mathbb{Q})[\rho]$ is finite.

Remark. • The fact that $L(E, \rho, 1) \neq 0$ implies rank $E(F)[\rho] = 0$ was first proven by Bertolini-Darmon-Rotger in [BDR14] via a different method.

• It is work in progress (jointly with Kings and Loeffler) to show that we can remove the hypothesis that E be ordinary at p, i.e. we can replace Hida families by Coleman families.

References

- [BDR14] Massimo Bertolini, Henri Darmon, and Victor Rotger, Beilinson-Flach elements and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-functions, to appear, 2014.
- [Kat04] Kazuya Kato, *P*-adic Hodge theory and values of zeta functions of modular forms, Astérisque **295** (2004), ix, 117–290, Cohomologies *p*-adiques et applications arithmétiques. III. MR 2104361
- [Kin13] Guido Kings, Eisenstein classes, elliptic Soulé elements and the l-adic elliptic polylogarithm, preprint, 2013.
- [KLZ14] Guido Kings, David Loeffler, and Sarah Zerbes, Rankin-Selberg Euler systems and p-adic interpolation, preprint, 2014.
- [LLZ14] Antonio Lei, David Loeffler, and Sarah Livia Zerbes, Euler systems for Rankin–Selberg convolutions of modular forms, Ann. of Math. 180 (2014), no. 2, 653–771.
- [Rub00] Karl Rubin, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, 2000. MR 1749177