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Introduction Arithmetic triangle groups

Arithmetic triangle groups

The triangle group (e1,e2,e3) with 2 ≤ e1,e2,e3 ≤ ∞:

〈x , y | xe1 = ye2 = (xy)e3 = id〉.

Such a Γ is called arithmetic if it has a unique embedding to
SL2(R) with image either commensurable with PSL2(Z) or related
to an order of a totally indefinite quaternion algebra over a totally
real field. Arithmetic triangle groups Γ have been classified by
Takeuchi. Γ acts on the upper half plane. The quotient space is a
modular curve when at least one of ei is∞; otherwise, it is a
Shimura curve.
Shimura curve for Γ parametrizes isomorphism classes of
2-dimensional abelian varieties so that for each fiber the
endomorphism ring contains the quaternion algebra associated
with Γ.
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Introduction Arithmetic triangle groups

(∞,∞,∞) and its modular curve

The arithmetic triangle group (∞,∞,∞) is isomorphic to Γ(2). A
model of the modular curves for Γ(2) is the Legendre family of curves

y2 = x(1− x)(1− λx).

A period for this curve is

p(λ) = π
∑

k≥0

(
2k
k

)2 λk

16k ,

which is a hypergeometric series.
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Introduction Hypergeometric Series and triangle groups

Hypergeometric series

2F1

[
a,b

c
; λ

]
=
∞∑

k=0

(a)k (b)k

(c)k

λk

k !
,

where (a)k = a(a + 1) · · · (a + k − 1). We assume a,b, c ∈ Q.
It is a solution of

HDE(a,b, c;λ) : λ(1− λ)F ′′ + [(a + b + 1)λ− c]F ′ + abF = 0,

whose monodromy group is a triangle group.
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Introduction Hypergeometric Series and triangle groups

Schwarz’s theorem

Theorem (Schwarz)

Let f ,g be two independent solutions to HDE(a,b; c;λ) at a point
z ∈ H, and let r1 = |1− c|, r2 = |c − a− b|, and r3 = |a− b|. Then the
Schwarz map D = f/g gives a bijection from H ∪ R onto a curvilinear
triangle with vertices D(0),D(1),D(∞), and corresponding angles
r1π, r2π, r3π.

When r1, r2, r3 are rational numbers in the lowest form (with 0 = 1
∞ ), let

ei be the denominators of r1, r2, r3 arranged in the non-decreasing
order, the monodromy group is isomorphic to the triangle group
(e1,e2,e3).

Example

When a = 1
6 ,b = 1

3 , c = 5
6 , r1 = |1− c| = 1

6 , r2 = |c − a− b| = 1
3 ,

r3 = |a− b| = 1
6 . The corresponding triangle group is (3,6,6).
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Introduction Generalized Legendre Curves

Generalized Legendre Curves

Euler’s integral representation of the 2F1 with c > b > 0

∫ 1

0
xb−1(1− x)c−b−1(1− λx)−adx = 2F1

[
a,b

c
; λ

]
B(b, c − b),

(1)
where B(a,b) = Γ(a)Γ(b)

Γ(a+b) is the Beta function.

Following Wolfart , this integral can be realized as a period of

C[N;i,j,k ]
λ : yN = x i(1− x)j(1− λx)k ,

where N = lcd(a,b, c), i = N(1− b), j = N(1 + b − c), k = Na.
The point counting on this curve is very explicit.

Example: associated to a = 1
6 ,b = 1

3 , c = 5
6 is C[6;4,3,1]

λ .
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Introduction A motivation

Petkoff-Shiga,’s result for (3,6,6)

By Petkoff-Shiga, for any λ ∈ Q, the Picard curve

C(λ) : w3 = (z2 − 1/4)
(

z2 − λ/4
)

satisfies that
• the Jacobian J(λ) = E ′(λ)⊕ A′(λ)

• E ′(λ) : w3 = (z − 1/4) (z − λ/4) is a CM elliptic curve

• for each λ ∈ Q, End0(A′(λ)) = End(A(λ))⊗Z Q contains
(
−3,2
Q

)

the quaternion algebra associated with (3,6,6).
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Introduction A motivation

A motivation

Question:
Given a hypergeometric differential equation HDE(a,b, c;λ) whose
monodromy group is an arithmetic triangle group Γ = (e1,e2,e3), does
the Jacobian of the associated the generic generalized Legendre curve
contains a 2-dimensional sub-abelian variety whose endomorphism
algebra contains the quaternion algebra associated with Γ?
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(3,6,6)

Example: C [6;4,3,1]
λ with Γ = (3,6,6)

For any λ ∈ Q, the curve C[6;4,3,1]
λ : y6 = x4(1− x)3(1− λx), its

Jacobian variety is decomposed as

Jac(X [6;4,3,1]
λ ) = E(λ)⊕ A(λ),

where
E(λ) : y3 = x4(1− x)3(1− λx)

is a CM elliptic curve.
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(3,6,6)

Comparison with the Picard curve by Petkoff-Shiga

Local L-functions with λ = 2

p Lp(X [6;4,3,1]
λ ,T ) Lp(C(λ),T )

7
E : 7T 2 + 4T + 1
A : (7T 2 − 2T + 1)2

E ′ : 7T 2 + 4T + 1
A′ : (7T 2 − 2T + 1)2

11
E : 11T 2 + 1
A : 121T 4 − 2T 2 + 1

E ′ : 11T 2 + 1
A′ : 121T 4 − 2T 2 + 1

13
E : 13T 2 − 2T + 1
A : 169T 4 − 14T 2 + 1

E ′ : 13T 2 − 2T + 1
A′ : 169T 4 − 14T 2 + 1

17
E : 17T 2 + 1
A : 289T 4 + 16T 2 + 1

E ′ : 17T 2 + 1
A′ : 289T 4 + 16T 2 + 1

19
E : 19T 2 − 8T + 1
A : 361T 4 + 10T 2 + 1

E ′ : 19T 2 − 8T + 1
A′ : 361T 4 + 10T 2 + 1
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(3,6,6)

Using counting points techique based on formal group laws, we can
show that

Theorem (Deines, L., Fuselier, Swisher, Tu)

Let λ ∈ Q, ` be prime, and ρ`, ρ′` the 4-dimensional `-adic Galois
representations of GQ := Gal(Q/Q) arising from A(λ) and A′(λ),
respectively. If both ρ and ρ′ are absolutely irreducible, then they are
isomorphic.
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Generalized Legendre Curves

Generalized Legendre Curves and Galois
Representations.

Let X (λ) = X [N;i,j,k ]
λ be the smooth model of C[N;i,j,k ]

λ . Its genus is

g = 1 + N− gcd(N, i + j + k) + gcd(N, i) + gcd(N, j) + gcd(N, k)

2
. (2)

Let J [N;i,j,k ]
λ be the Jacobian of variety of X (λ) = X [N;i,j,k ]

λ .
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Generalized Legendre Curves

Decomposition of the Jacobian variety

For any Nth root ζ, Aζ : (x , y) 7→ (x , ζ−1y) is an order N automorphism
on C[N;i,j,k ]

λ .
For any n | N, C[N;i,j,k ]

λ contains a quotient isomorphic to C[n;i,j,k ]
λ . Thus

J [N;i,j,k ]
λ contains a sub-abelian variety which is isomorphic to J [n;i,j,k ]

λ .
Let Jnew (λ) be the primitive part of J [N;i,j,k ]

λ (over Q) so that its image in
each J [n;i,j,k ]

λ quotient is 0-dimensional. Archinard shows that the
dimension of J [N;i,j,k ]

λ is ϕ(N), the Euler number of N.
Our goal is to study the Galois representations associated with Jnew (λ)
and determine its endomorphism algebra.
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Generalized Legendre Curves

We will assume λ ∈ Q and first consider ϕ(N) = 2 cases so that
(Z/NZ)× = {1,N − 1}. In this case, one can attach a compatible
family of 4-dimensional Galois representation of GQ associated with
Jnew
λ . When restricted to GGal(Q/Q(ζN ), it is isomorphic to σ1 ⊕ σN−1.

Ling Long (LSU) Generalized Legendre Curves and QM August 14, 2014 14 / 35



Generalized Legendre Curves

Our result for the case of ϕ(N) = 2

Theorem (Deines, L., Fuselier, Swisher, Tu)

Let N = 3,4,6, 1 ≤ i , j , k < N. Suppose N - i + j + k. Then Jnew (λ)
contains a quaternion algebra for all λ ∈ Q (which can be determined
explicitly) and if and only if, the quotient

B
(

N − i
N

,
N − j

N

)/
B
(

k
N
,
2N − i − j − k

N

)
∈ Q.

Our method applies to ϕ(N) > 2 cases.
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Galois representations

Decomposition of Galois representation

Aζ also induces an action on the `-adic Galois representation arising
from the Tate module of J(λ)

ρ`(λ) : GQ → GL2g(Q`).

Consequently,

ρ`(λ)|Gal(Q/Q(ζN )) =
N−1⊕

n=1

σn(λ)

where σn(λ) is 2-dimensional when (n,N) = 1.
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Galois representations

Galois representations via Gaussian hypergeo. series

Definition of Gaussian hypergeometric series by Greene

For characters A, B, and C in F̂×q and λ ∈ Fq, define

2F1

(
A B

C
;λ

)

q
= ε(λ)

BC(−1)

q

∑

x∈Fq

B(x)BC(1− x)A(1− λx),

where
• ε is the trivial character, and

• we extend χ on Fq with χ(0) = 0, for all χ ∈ F̂×q .
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Galois representations

Proposition

If A,B,C ∈ F̂×q A,B 6= ε, A,B 6= C, and λ ∈ Fq \ {0,1},

J(A,AC) 2F1

(
A B

C
;λ

)

q
=

AB(−1)C(−λ)CAB(1− λ)J(B,BC) 2F1

(
A B

C
;λ

)

q
.
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Galois representations

Counting points on generalized Legendre curves

Theorem

Let p > 3 be prime and q = ps ≡ 1 (mod N), and let i , j , k be natural
numbers with 1 ≤ i , j , k < N. Further, let ξ ∈ F̂×q be a character of
order N. Then for λ ∈ Fq \ {0,1},

#X [N;i,j,k ]
λ (Fq) = 1 + q + q

N−1∑

m=1

ξmj(−1) 2F1

(
ξ−km ξim

ξm(i+j) ;λ

)

q

+ n0 + n1 + n 1
λ

+ n∞ − 4, (3)

where n0,n1,n 1
λ
,n∞ are the numbers of points on X [N;i,j,k ]

λ from

resolving the singularities 0,1, 1
λ ,∞ respectively of C[N;i,j,k ]

λ
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Galois representations

Theorem

Let N, i , j , k as before, λ ∈ Q, p be any prime that is unramified for ρ`
such that λ 6= 0,1 (mod ℘). Let ℘ be a prime of OQ(ζN ) above p and

q = |OQ(ζN )/℘|. Let ξ ∈ F̂×q of order N and Frob℘ denotes the
(arithmetic) Frobenius in GQ(ζN ). For any n coprime to N, the values

TrFrob−1
℘ (σn(λ)) and 2F1

(
ξ−kn ξin

ξn(i+j) ;λ

)

q
· ξnj(−1)

agree up to different embeddings of Q(ζN) in C.
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ϕ(N) = 2

We will assume λ ∈ Q and first consider the ϕ(N) = 2 case so that
(Z/NZ)× = {1,N − 1}. In this case, one can attach a compatible
family of 4-dimensional Galois representations of GQ associated with
Jnew
λ . When it is restricted to GQ/Q(ζN ), it is isomorphic to σ1 ⊕ σN−1.
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ϕ(N) = 2

4-dimensional Galois representations with QM

When End0(Jnew
λ ) is a quaternion algebra, then there are two

semi-linear operators I, J acting on the 4-dimensional representation
space of End0(Jnew

λ ) such that I2 and J2 are scalars and IJ = −JI. In
this case, we say the Galois representation admits QM.

Proposition

Assume that ρ` is a compatible family of 4-dimensional Galois
representations of GQ which admits QM. Let K be a number field such
that both I, J are defined. Then ρ`|Gal(Q/K ) is a direct sum of two
isomorphic sub-representations.

Examples of 4-dimensional Galois representations with QM arising
from noncongruence modular forms have been studied by A.O.L.
Atkin, Wen-Ching Winnie Li, L. Tong Liu and Zifeng Yang.
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ϕ(N) = 2

Combing with that σn(λ) can be computed using Gaussian 2F1

Proposition

If A,B,C ∈ F̂×q A,B 6= ε, A,B 6= C, and λ ∈ Fq \ {0,1},

J(A,AC) 2F1

(
A B

C
;λ

)

q
=

AB(−1)C(−λ)CAB(1− λ)J(B,BC) 2F1

(
A B

C
;λ

)

q
.

As A = ξ−k ,B = ξi ,C = ζ(i+j) for σ1, one can conclude that if ϕ(N) = 2
and End0(Jnew

λ ) is a quaternion algebra, then σ1 and σN−1 are differed
by a character of GGal(Q/Q(ζN ) and consequently for each good prime
p ≡ 1 mod N

J(ξin, ξjn)/J(ξ−kn, ξn(i+j+k))

has to be a character in F̂×p .
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ϕ(N) = 2

Results on Gauss sums g(ξ) and Jacobi sums

g(χ)g(χ) = p, χ 6= ε

Hasse-Davenport relation: for ` | M

g(χ`a) = (−1)`χ(``a−M/2)χ(2N/2)1−`g(χM/2)1−`
`−1∏

j=0

g(χa+(M/`)j)

Theorem (Yamamoto)
When M ≥ 4 is an even number, and p is a prime such that M divides
p − 1, then the above two identities are the only two relations
connecting the Gauss sums g(χ) for χ ∈ F̂×p satisfying χM = ε, when
considered as ideals.
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ϕ(N) = 2 Jacobi Sums and Beta Functions

Jacobi sums and Beta functions

g(χ)g(χ) = p,

Γ(z)Γ(1− z) =
π

sin(zπ)
.

g(χ`a) = (−1)`χ(``a−M/2)χ(2N/2)1−`g(χM/2)1−`
`−1∏

j=0

g(χa+(M/`)j)

Γ(`z) = `(`z− 1
2 )2

(1−`)
2 Γ

(
1
2

)1−` `−1∏

j=0

Γ

(
z +

j
`

)
.
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ϕ(N) = 2 Jacobi Sums and Beta Functions

Jacobi sums and Beta functions

If z = i
M is a rational number, χ ∈ F̂×p of order M, we have the following

dictionary
i

M ⇐⇒ χi

1
2 ⇐⇒ χM/2

Γ( i
M ) ⇐⇒ g(χi)

B( i
M ,

j
M ) ⇐⇒ J(χi , χj).
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Jacobi Sums and Beta Functions

If z = i
M is a rational number, χ ∈ F̂×p of order M, we have the following

dictionary
i

M ⇐⇒ χi

1
2 ⇐⇒ χM/2

Γ( i
M ) ⇐⇒ g(χi)

B( i
M ,

j
M ) ⇐⇒ J(χi , χj).

Proposition. Let M ≥ 4 be an even integer and M divides p − 1 and
let η ∈ F̂×p of order M. Let A = ηi ,B = ηj ,C = ηk be characters such
that none of A,B,C,AC,BC are trivial. If J(ηj , ηk−j)/J(ηi , ηk−i) is a
character for each prime p with p ≡ 1 mod M, then
B( j

M ,
k−j
M )/B( i

M ,
k−i
M ) is an algebraic number.
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ϕ(N) = 2 Jacobi Sums and Beta Functions

In conclusion, when ϕ(N) = 2 and End0(Jnew
λ ) contains a quaternion

algebra then for each good prime p ≡ 1 mod N and ξ an order N
character in F̂×p

J(ξin, ξjn)/J(ξ−kn, ξn(i+j+k))

has to be a character and B(N−i
N , N−j

N )/B(N−k
N , 2N−i−j−k

N ) has to be
algebraic.
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ϕ(N) = 2 Jacobi Sums and Beta Functions

Conversely, by computing the periods of Jnew
λ explicitly in terms of

hypergeometric series. The following are 4 linearly independent
periods of second kind on J1 ⊕ JN−1

τ1 =B
(

N − i
N

,
N − j

N

)
2F1

[
k
N

N−i
N

2N−i−j
N

;λ

]
,

τ2 =(−1)
k+j
N λ

i+j−N
N B

(
i + j + k − N

N
,
N − k

N

)
2F1

[
j
N

i+j+k−N
N

i+j
N

;λ

]

τ3 =B
(

i
N
,

j
N

)
2F1

[
N−k

N
i
N

i+j
N

;λ

]
,

τ4 =(−1)
2N−k−j

N λ
N−i−j

N B
(

2N − i − j − k
N

,
k
N

)
2F1

[
N−j

N
2N−i−j−k

N
2N−i−j

N

;λ

]
,
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ϕ(N) = 2 Jacobi Sums and Beta Functions

Using Euler transformation for hypergeometric series,

τ4/τ1 = α(λ)
Γ
(

2− i+j+k
N

)
Γ
( k

N

)

Γ
(
1− i

N

)
Γ
(

1− j
N

)

and

τ2/τ3 = α(λ)−1
Γ
(

i+j+k
N − 1

)
Γ
(
1− k

N

)

Γ
( i

N

)
Γ
(

j
N

) ,

where α(λ) = (−1)
k+j
N λ

N−i−j
N (1− λ)

k+j−N
N .
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ϕ(N) = 2 Wusthol’s Result

Wüstholz’s Theorem

• Let A be an abelian variety isogenous over Q to the direct product
An1

1 × · · ·A
nk
k of simple, pairwise non-isogenous abelian varieties

Aµ defined over Q, µ = 1, . . . , k .
• Let ΛQ(A) denote the space of all periods of differentials, defined

over Q, of the first kind and the second on A.
• Then the vector space V̂A over Q generated by 1, 2πi , and ΛQ(A),

has dimension

dimQ V̂A = 2 + 4
k∑

ν=1

dim A2
ν

dimQ(End0Aν)
.
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ϕ(N) = 2 Wusthol’s Result

Thus, if B(N−i
N , N−j

N )/B(N−k
N , 2N−i−j−k

N ) is algebraic, then V̂A over Q is
at most 8 dimensional. Thus Jnew

λ is either
simple whose endomorphism algebra is at least 4-dimensional
it is a direct summand of 2 isogenous 1-dimensional abelian
varieties

Consequently, End0(Jnew
λ ) is either

a division algebra that contains a quaternion algebra
a matrix algebra

The period matrix can determine whether the endomorphism algebra
is a division algebra. For instance, we can determine that the
endomorphism algebra for the primitive part of J [6;4,3,1]

λ is indeed(
−3,2
Q

)
.
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ϕ(N) = 2 C[3;1,2,1]
λ

For a generic genus-2 curve C[3;1,2,1]
λ , its endomorphism algebra is

M2(Q) and one its period is π · 2F1

[
1
3 ,

2
3

1
; λ

]
whose corresponding

monodromy group (3,∞,∞). Using Galois representation, we can
show that

Theorem
Let λ ∈ Q \ {0,1} and ρ be the 4-dimensional Galois representation of
GQ arising from the genus-2 curve y3 = x(x − 1)2(1− λx). Let ρ′ be
the Galois representation of GQ arising from the elliptic curve
y2 + xy + λ

27 = x3. Then ρ is isomorphic to ρ′⊕ (ρ′⊗χ−3) where χ−3 is
the quadratic character of GQ with kernel GQ(

√
−3).
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Some cases for ϕ(N) > 2

X [5;1,4,1]
λ and Hilbert modular forms

From computing the corresponding Galois representation, one can
predict that its L-function is related to two Hilbert modular forms, which
differ by embeddings of Q(

√
5) to C. From numeric data, we identified

two Hilbert modular forms, which are labeled by Hilbert Cusp Form
2.2.5.1-500.1-a in the LMFDB online database.

p Lp(X(λ), T ) over Q(
√

5) Hecke eigenvalues

7 (49T 4 + 10T 2 + 1)(49T 4 − 10T 2 + 1) −10
11 (11T 2 − 2T + 1)4 2, 2
13 (169T 4 + 1)2 0
17 (289T 4 − 20T 2 + 1)(289T 4 + 20T 2 + 1) 20

19

(
19T 2 − 5

(
1+
√

5
2

)
T + 1

) (
19T 2 − 5

(
1−
√

5
2

)
T + 1

)
(

19T 2 + 5
(

1+
√

5
2

)
T + 1

) (
19T 2 + 5

(
1−
√

5
2

)
T + 1

) 5
(

1±
√

5
2

)

31
((

31T 2 +
(

1+5
√

5
2

)
T + 1

) (
31T 2 +

(
1−5
√

5
2

)
T + 1

))2 −1±5
√

5
2

41
((

41T 2 +
(

1+5
√

5
2

)
T + 1

) (
41T 2 +

(
1−5
√

5
2

)
T + 1

))2 −1±5
√

5
2
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Some cases for ϕ(N) > 2

Thank you!
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