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Atthmeic triangle groups
Arithmetic triangle groups

@ The triangle group (e1, €2, e3) with 2 < ey, €2, €3 < o¢:

(x,y | x&' = y® = (xy)® = id).

Ling Long (LSU) Generalized Legendre Curves and QM August 14, 2014 2/35



Atthmeic triangle groups
Arithmetic triangle groups

@ The triangle group (e1, €2, e3) with 2 < ey, €2, €3 < o¢:
X,y | x% = y® = (xy)*® = id).

@ Such a T is called arithmetic if it has a unigue embedding to
SL>(R) with image either commensurable with PSL,(Z) or related
to an order of a totally indefinite quaternion algebra over a totally
real field. Arithmetic triangle groups I have been classified by
Takeuchi. I' acts on the upper half plane. The quotient space is a
modular curve when at least one of g; is oo; otherwise, it is a

Shimura curve.
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Atthmeic triangle groups
Arithmetic triangle groups

@ The triangle group (e1, €2, e3) with 2 < ey, €2, €3 < o¢:
X,y | x% = y® = (xy)*® = id).

@ Such a T is called arithmetic if it has a unigue embedding to
SL>(R) with image either commensurable with PSL,(Z) or related
to an order of a totally indefinite quaternion algebra over a totally
real field. Arithmetic triangle groups I have been classified by
Takeuchi. I' acts on the upper half plane. The quotient space is a
modular curve when at least one of g; is oo; otherwise, it is a
Shimura curve.

@ Shimura curve for [ parametrizes isomorphism classes of
2-dimensional abelian varieties so that for each fiber the
endomorphism ring contains the quaternion algebra associated
with I.
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(00, 00, 00) and its modular curve

The arithmetic triangle group (oo, 0o, o) is isomorphic to '(2). A
model of the modular curves for I'(2) is the Legendre family of curves

y? = x(1 = x)(1 = \x).
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Afthmetic triangle groups
(00, 00, 00) and its modular curve

The arithmetic triangle group (oo, 0o, 00) is isomorphic to ['(2). A
model of the modular curves for I'(2) is the Legendre family of curves

y? = x(1 = x)(1 = \x).

A period for this curve is

which is a hypergeometric series.
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Hypergeometric Series and triangle groups
Hypergeometric series

a,b
© A
C

_ i (a)k(b)x A\

F

k=0

where (a)x = a(a+1)---(a+k—1). Weassume a,b, c € Q.
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Hypergeometric Series and triangle groups
Hypergeometric series

a,b
© A
C

_ i (a)k(b)x N

—~ (Ck K

where (a)x = a(a+1)---(a+k—1). Weassume a,b, c € Q.
@ |t is a solution of

o F4

HDE(a,b,c;\) : \(1 = A\F" +[(a+ b+ 1)X — c]F' + abF = 0,

whose monodromy group is a triangle group.
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Hypergeometric Series and triangle groups
Schwarz’s theorem

Theorem (Schwarz)

Let f, g be two independent solutions to HDE(a, b; c; \) at a point
zen,andletry =1 —c|,n=|c—a—b|,andr; = |a— b|. Then the
Schwarz map D = f/g gives a bijection from $H U R onto a curvilinear
triangle with vertices D(0), D(1), D(~0), and corresponding angles
rm, rom, I3m.

v

When ry, >, r3 are rational numbers in the lowest form (with 0 = %), let
e; be the denominators of ry, r», r3 arranged in the non-decreasing
order, the monodromy group is isomorphic to the triangle group

(e1 , €2, 63)'

Ling Long (LSU) Generalized Legendre Curves and QM August 14, 2014 5/35



Hypergeometric Series and triangle groups
Schwarz’s theorem

Theorem (Schwarz)

Let f, g be two independent solutions to HDE(a, b; c; \) at a point
zen,andletry =1 —c|,n=|c—a—b|,andr; = |a— b|. Then the
Schwarz map D = f/g gives a bijection from $H U R onto a curvilinear
triangle with vertices D(0), D(1), D(~0), and corresponding angles
rm, rom, I3m.

v

When ry, >, r3 are rational numbers in the lowest form (with 0 = %), let

e; be the denominators of ry, r», r3 arranged in the non-decreasing
order, the monodromy group is isomorphic to the triangle group

(e1 , €2, 63)'

Example

When a= | z,
r=la—bl=¢%.Th

=2, n=1-cl=%n=c-a-bl=1,

corresponding triangle group is (3, 6, 6).

ey
I
© O

Ling Long (LSU) Generalized Legendre Curves and QM August 14, 2014 5/35



Generalized Legendre Curves
Generalized Legendre Curves

@ Euler’s integral representation of the > withc > b > 0

b
a’c; A] B(b, ¢ — b),

(1)

1
/ xP=1(1 = x)¢=P=1(1 — Ax)"%dx = »F; [
0

where B(a, b) = [(@)(b) s the Beta function.

[(a+b)
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Generalized Legendre Curves
Generalized Legendre Curves

@ Euler’s integral representation of the > withc > b > 0

a,b

1
/ xP=1(1 = x)e7 2711 — \x)"8dx = »F; LA B(b,c — b),
0

(1)

where B(a, b) = rr((aa)i(bb)) is the Beta function.

@ Following Wolfart , this integral can be realized as a period of

C&N;i’j’k] yN = Xx'(1 = xyY(1 = X)X,

where N = lcd(a,b,c), i = N(1—-b),j= N1 +b—-c), k= Na.
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Generalized Legendre Curves
Generalized Legendre Curves

@ Euler’s integral representation of the > withc > b > 0

a,b

1
/ xP=1(1 = x)e7 2711 — \x)"8dx = »F; LA B(b,c — b),
0

(1)

where B(a, b) = rr((aa)i(bb)) is the Beta function.

@ Following Wolfart , this integral can be realized as a period of

C&N;i’j’k] yN = Xx'(1 = xyY(1 = X)X,

where N = lcd(a, b, c), i= N(1—-b),j =N+ b-rc), k= Na.
@ The point counting on this curve is very explicit.

Ling Long (LSU) Generalized Legendre Curves and QM August 14, 2014 6/35




Generalized Legendre Curves
Generalized Legendre Curves

@ Euler’s integral representation of the > withc > b > 0

a,b

1
/ xP=1(1 = x)e7 2711 — \x)"8dx = »F; LA B(b,c — b),
0

(1)

where B(a, b) = rr((aa)i(bb)) is the Beta function.

@ Following Wolfart , this integral can be realized as a period of
C&N;i’j’k] yN = Xx'(1 = xyY(1 = X)X,

where N = lcd(a, b, c), i= N(1—-b),j =N+ b-rc), k= Na.
@ The point counting on this curve is very explicit.
@ Example: associatedto a= ¢, b=%,c=2is C£6;4’3’1].
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Petkoff-Shiga,’s result for (3,6,6)

By Petkoff-Shiga, for any )\ € Q, the Picard curve
CON) : WP = (22— 1/4) (22 - \/4)

satisfies that
e the Jacobian J(\) = E'(\) @ A'(\)
e E'(A\): w3 =(z—-1/4)(z— )\/4)is a CM elliptic curve
e for each \ € Q, Endy(A'(\)) = End(A()\)) ®7 Q contains (%)
the quaternion algebra associated with (3,6, 6).
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A motivation
A motivation

Question:

Given a hypergeometric differential equation HDE(a, b, c; \) whose
monodromy group is an arithmetic triangle group I' = (e4, €2, €3), does
the Jacobian of the associated the generic generalized Legendre curve
contains a 2-dimensional sub-abelian variety whose endomorphism
algebra contains the quaternion algebra associated with I'?
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(3,6,6)

Example: C**! with I = (3,6, 6)

For any \ € Q, the curve C£6;4’3’1] Y8 = x*(1 — x)3(1 — A\x), its
Jacobian variety is decomposed as

Jac(XP*3 1) = E() @ AN,

where

EN): y® =x*(1 = x)°(1 = Xx)

is a CM elliptic curve.
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(3,6,6)

Comparison with the Picard curve by Petkoff-Shiga

Local L-functions with A = 2

p || L+ T) Lp(C(\), T)
E:7T°+4T +1 E':7T°+4T +1
A (7T? 2T +1)? A (7TT? —2T +1)?
» E:11T7% +1 E': 1172 + 1
A:121T4 - 272 +1 A 121T4 —2T2 + 1
i3 E: 1372 —2T + 1 E': 1372 —2T + 1
A:169T* —14T2+1 | A : 169T* —14T2 + 1
17 E:17T% +1 E' 1772 + 1
A:289T4+16T2+1 | A :289T*+16T72 + 1
19 E: 19T —8T + 1 E': 197 —8T + 1
A:361T*+10T2+1 | A:361T*+10T2 + 1
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(3,6,6)

Using counting points techique based on formal group laws, we can
show that

Theorem (Deines, L., Fuselier, Swisher, Tu)

Let A € Q, ¢ be prime, and p,, p, the 4-dimensional ¢-adic Galois
representations of Gg := Gal(Q/Q) arising from A(\) and A'()\),
respectively. If both p and p' are absolutely irreducible, then they are
isomorphic.
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Generalized Legendre Curves

Generalized Legendre Curves and Galois
Representations.

Let X(\) = X£N;”j’k] be the smooth model of C&N””j’k]. lts genus is

(N,i+j+ k)+gcd(N, i)+ gcd(N,j) + gcd(N, k) )
5 .

g:1+N—gCOI

Let J£N;i’j’k] be the Jacobian of variety of X(\) = XA[N;"’j’k].
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Decomposition of the Jacobian variety

For any Nth root ¢, A : (x,y) — (x,("y) is an order N automorphism
on cVHA,
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Decomposition of the Jacobian variety

For any Nth root ¢, A : (x,y) — (x,("y) is an order N automorphism
on CNHA

Forany n| N, CLN"”’k] contains a quotient isomorphic to CL”””’k]. Thus
JNTIK contains a sub-abelian variety which is isomorphic to JI""4]
Let J™%()) be the primitive part of J'/*! (over Q) so that its image in
each JI""7! quotient is 0-dimensional. Archinard shows that the
dimension of JI""""*is ,(N), the Euler number of N.
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Decomposition of the Jacobian variety

For any Nth root ¢, A : (x,y) — (x,("y) is an order N automorphism
on CIN#k]

Forany n| N, CLN"”’k] contains a quotient isomorphic to CL”””’k]. Thus
JNIK contains a sub-abelian variety which is isomorphic to JI""4]
Let J™"()) be the primitive part of J\"/*! (over Q) so that its image in
each JI""7*! quotient is 0-dimensional. Archinard shows that the

dimension of JLN;"’j’k] is o(N), the Euler number of N.
Our goal is to study the Galois representations associated with J"7¢%(\)
and determine its endomorphism algebra.
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Generalized Legendre Curves

We will assume A € Q and first consider ¢(N) = 2 cases so that
(Z/NZ)* = {1, N — 1}. In this case, one can attach a compatible
family of 4-dimensional Galois representation of Gg associated with
J7". When restricted to GGal(@ Q) it is isomorphic to o1 ® on_1.
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Our result for the case of p(N) = 2

Theorem (Deines, L., Fuselier, Swisher, Tu)

LetN=3,4,6,1<1i,j,k <N. Suppose N+ti+j+ k. Then J"®" ()
contains a quaternion algebra for all A € Q (which can be determined
explicitly) and if and only if, the quotient

N—i N—j kK 2N—i—j—k\ —
B(N’N)/B<N’ N )EQ'

Our method applies to ¢(N) > 2 cases.
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Decomposition of Galois representation

A; also induces an action on the ¢-adic Galois representation arising
from the Tate module of J(\)

pe(N) : G — Glag(Qy).

Consequently,

N—1
eV lGa@/aie) = D on(M)

n=1
where op()\) is 2-dimensional when (n, N) = 1.
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Galois representations via Gaussian hypergeo. series

Definition of Gaussian hypergeometric series by Greene

For characters A, B, and C in ﬁg and \ € IFg, define

»F; (A g;x) = e(\) BCE;” > B(x)BC(1 — x)A(1 — Ax),
q

x€lFq

where
e ¢ is the trivial character, and
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Galois representations via Gaussian hypergeo. series

Definition of Gaussian hypergeometric series by Greene

For characters A, B, and C in ﬁg and \ € IFg, define

oF; (A g;x)q = e(\) BCEJ_” XEZF B(x)BC(1 — x)A(1 — \x),
where

e ¢ is the trivial character, and

e we extend x on g with x(0) = 0, for all x € Fy].
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Galois representations

Proposition

ItAB,CcF; AB#e AB+#C, and e Fq\{0,1},
J(A,ZC)2F1 (A g,A) =
q

AB(—1)C(—=\)CAB(1 — \)J(B, BC) > F; (Z

ol w

>
N———
Q

Ling Long (LSU)
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Counting points on generalized Legendre curves

Theorem

Letp > 3 be prime and q = p* =1 (mod N), and let i, |, k be natural

numbers with 1 < i,j, k < N. Further, let ¢ ¢ F; be a character of
order N. Then for A € Fq \ {0, 1},

[N:7 ] K] N-1 _ g—km im
#X0 N (F) =1+q+q ) 7(=1)2F ( gm(/+/);A>
q

m=1

+no+n1+n%+noo—4, (3)

. Niij,k
where ny, Ny, N1, Ny, are the numbers of points on X A[ K from
A

resolving the singularities 0,1, X, co respectively of C/[\N K]

y
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Galois representations

Theorem

LetN,i,j, k as before, A € Q, p be any prime that is unramified for p,
such that A # 0,1 (mod p). Let p be a prime of Og,, above p and

q = |Og(ey)/0l- Let§ € Iﬁ:g of order N and Frob,, denotes the
(arithmetic) Frobenius in Gg,)- For any n coprime to N, the values

—kn in
TrFrob;(an()\)) and oF; (g‘ gng(,-ﬂ);)\) -f”j(—1)
q

agree up to different embeddings of Q((y) in C.
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We will assume X\ € Q and first consider the ¢(N) = 2 case so that
(Z/Nz)* = {1, N —1}. In this case, one can attach a compatible
family of 4-dimensional Galois representations of Gg associated with
J7. When it is restricted to G@ JQ(CN)’ it is isomorphic to o1 ® on_1.
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4-dimensional Galois representations with QM

When Endy(J{®") is a quaternion algebra, then there are two
semi-linear operators /, J acting on the 4-dimensional representation
space of Endy(J7¢") such that /# and J? are scalars and IJ = —JI. In
this case, we say the Galois representation admits QM.

Proposition

Assume that p, is a compatible family of 4-dimensional Galois
representations of Gg which admits QM. Let K be a number field such
that both /, J are defined. Then py|g, g,k is @ direct sum of two
isomorphic sub-representations.

Examples of 4-dimensional Galois representations with QM arising
from noncongruence modular forms have been studied by A.O.L.
Atkin, Wen-Ching Winnie Li, L. Tong Liu and Zifeng Yang.
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Combing with that o,()\) can be computed using Gaussian 2F 1
Proposition

ItAB,CeF; AB+#e AB+C, andeFq\{0,1},

J(A,ZC)2F1 (A g,)\> —
q

Ol T

AB(—‘I)é(—)\)CE(‘I - )\)J(B,EC)QF1 <A ;A) .
q
As A= ¢ K B=¢' C = ¢U*D) for o1, one can conclude that if p(N) = 2

and Endp(J{®") is a quaternion algebra, then o4 and on_4 are differed

by a character of GGal(@ 1Q(Cy) and consequently for each good prime
p=1 mod N

o

J(EM, M) jJ(&kn, enUHTTR)Y
has to be a character in Iﬁg.

Ling Long (LSU) Generalized Legendre Curves and QM August 14, 2014 23/35



Results on Gauss sums g(¢) and Jacobi sums

ax)glx) =p, x#c¢
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Results on Gauss sums g(¢) and Jacobi sums

alx)glx) =p, x#c¢

Hasse-Davenport relation: for ¢ | M

-1

g(x"?) = (1) x (e @ M2) (2N2) =g (ML T T gy @My
j=0
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Results on Gauss sums g(¢) and Jacobi sums

ax)9glx) =p, x#e
Hasse-Davenport relation: for ¢ | M

0—1
g(x'?) = (1) x (@ MB) (2N2) =g (ML T T gyt Mrory
j=0

Theorem (Yamamoto)

When M > 4 js an even number, and p is a prime such that M divides
p — 1, then the above two identities are the only two relations

connecting the Gauss sums g(x) for x € F} satisfying x¥ = ¢, when
considered as ideals.

v
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Jacobi sums and Beta functions
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Jacobi Sums and Beta Functions
Jacobi sums and Beta functions

g(x") = (—1)"x(e e M2 (2N2) g (x M/?)

g(Xa+(M/£)j)
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Jacobi Sums and Beta Functions
Jacobi sums and Beta functions

If z = ﬁ is a rational number, y € IF;j of order M, we have the following
dictionary

i

i — Y
%‘ — XM/?
f(w) <= a(xX)
B(w;. 1) <= JIX'. ).
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Jacobi Sums and Beta Functions
Jacobi Sums and Beta Functions

If z = ﬁ is a rational number, x € ]F;; of order M, we have the following
dictionary

& — X'
! = M2
M) <= 9(xX)
B(i-11) = JO:X).
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Jacobi Sums and Beta Functions
Jacobi Sums and Beta Functions

If z = ﬁ is a rational number, x € ]F;; of order M, we have the following

dictionary
i

& — Y
3 = M2
M) <= 9(xX)
B(i-11) = JO:X).

Proposition. Let M > 4 be an even integer and M divides p — 1 and

let n € Fjy of order M. Let A= #', B =1/, C = n* be characters such
that none of A, B, C, AC, BC are trivial. If J(f/,n*~/)/J(n/,n*~") is a
character for each prime p with p =1 mod M, then

B(4:, %1)/B(:, ¥=1) is an algebraic number.
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p(N) =2 Jacobi Sums and Beta Functions

In conclusion, when ¢(N) = 2 and Enap(J7¢") contains a quaternion
algebra then for each good prime p=1 mod N and £ an order N

character in ]F;;

J(EM, €M) jJ(ghn, gnitith))

Nk2N//k

has to be a character and B(N!, N-1) /B(N- =) has to be
algebraic.
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p(N) =2 Jacobi Sums and Beta Functions

Conversely, by computing the periods of J7¢" explicitly in terms of
hypergeometric series. The following are 4 linearly independent
periods of second kind on J; & Jy_1

N—i N=j\ o |n W
’7'1:B< N N >2F1 %;)\7
kij itj-N _(i+j+k—N N—k S iHtk=N
2 =(—1) AW B( IN Y )2F1 Tl A
N
. N—k i
_g(L ] N N
Ts_B(N’N) F1 %,)\’

- :(_1)2N—Nk—j)\N—A;'—jB <2N —i—j—k 5) JF,
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p(N) =2 Jacobi Sums and Beta Functions

Using Euler transformation for hypergeometric series,
r (2 B /—I—H-k) r (%)
() J
N

)

7'4/7'1204
r(1—a)T

and
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Wusthol's Result
Wistholz’'s Theorem

e Let A be an abelian variety isogenous over Q to the direct product
A" x .- Af¥ of simple, pairwise non-isogenous abelian varieties
A, definedover Q, p=1,... k.

e Let Ag(A) denote the space of all periods of differentials, defined
over QQ, of the first kind and the second on A.
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Wusthol's Result
Wistholz’'s Theorem

e Let A be an abelian variety isogenous over Q to the direct product
A" x .- Af¥ of simple, pairwise non-isogenous abelian varieties
A, definedover Q, p=1,... k.

e Let Ag(A) denote the space of all periods of differentials, defined
over QQ, of the first kind and the second on A.

e Then the vector space VA over Q generated by 1, 2/, and /\@(A),
has dimension

dim- V4 = 2+4zk: dim A)
Q"A~ — dim@(EndoA,/).
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p(N) =2 Wausthol’s Result

Thus, if B(N<1 Ny g(Nok 2NZIZi=ky s algebraic, then V, over Q s
at most 8 dimenS|onaI. Thus J”eW is either

@ simple whose endomorphism algebra is at least 4-dimensional
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at most 8 dimenS|onaI. Thus J”eW is either

@ simple whose endomorphism algebra is at least 4-dimensional

@ it is a direct summand of 2 isogenous 1-dimensional abelian
varieties

Consequently, Endy(J7¢") is either
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Consequently, Endy(J7°") is either
@ a division algebra that contains a quaternion algebra
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p(N) =2 Wausthol’s Result

Thus, if B(N-, Nol) BNk 2NZIZi—ky s algebraic, then V4 over Q is
at most 8 dimensional. Thus J”eW is either

@ simple whose endomorphism algebra is at least 4-dimensional

@ itis a direct summand of 2 isogenous 1-dimensional abelian
varieties

Consequently, Endy(J7°") is either
@ a division algebra that contains a quaternion algebra
@ a matrix algebra

The period matrix can determine whether the endomorphism algebra
Is a division algebra. For instance, we can determine that the

endomorphism algebra for the primitive part of J£6;4’3’1] IS indeed

+)
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. 1211 . . .
For a generic genus-2 curve CE” = ], its endomorphism algebra is
12

M,(Q) and one its period is 7 - »F; 3’;” . | whose corresponding

monodromy group (3, oo, 00). Using Galois representation, we can
show that

Theorem

Let \ € Q\ {0,1} and p be the 4-dimensional Galois representation of
G arising from the genus-2 curve y® = x(x — 1)2(1 — \x). Let p’ be
the Galois representation of Gq arising from the elliptic curve

y2 +xy + 2 = x3. Then p is isomorphic to o' © (o' @ x_3) where x_3 is
the quadratic character of Gy with kernel Gy, /=3

v
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x>+ and Hilbert modular forms

From computing the corresponding Galois representation, one can

predict that its L-function is related to two Hilbert modular forms, which
differ by embeddings of Q(v/5) to C. From numeric data, we identified

two Hilbert modular forms, which are labeled by Hilbert Cusp Form

2.2.5.1-500.1-a in the LMFDB online database.

| Hecke eigenvalues

p_| Lp(X(A), T) over Q(+/5)

7 (49T* + 1072 + 1)(49T* — 10T% + 1) —10

11 (1172 — 2T + 1)* 2,2

13 (169T* +1)° 0

17 (289T*% — 2072 + 1)(289T* + 2072 + 1) 20

B (19T2—5(%5)T+1) (19T2—5<1_2\/§)T+1) S(M)
(1972 +5 (158) 7+ 1) 19T2+5<1—2\/5)T+1> 2

a1 | (8172 + (B55) 74+1) (31T2+(1—2V5)T+1))2 —1£5v6

41 ((41T2+(‘+52\/5)T+1) (41T2+(1_2‘/5)T+1))2 —145v/5
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Some cases for o(N) > 2

Thank you!
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