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Goal for this lecture:

a.) Discuss the difference between the cohomology of compact

and noncompact symmetric spaces.

b.) Explain a construction some additional harmonic forms rep-

resenting nontrivial classes in H∗(ΓsX) for noncompact locally

symmetric spaces related to ”cusps”
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We assume that G is an connected algebraic group defined over

Q,

G = G(R) its real points

Γ is an arithmetic group

Recall

Theorem 1. Suppose that Γ\G is compact.

H∗(Γ\G) = ⊕π∈Ĝm(Γ, π)H∗(g,K, Vπ)

The sum is finite.
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Last time we saw that Representation theory (classification of

irreducible unitary reps with nontrivial cohomology) implies van-

ishing theorems
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Last time we saw that Representation theory (classification of

irreducible unitary reps with nontrivial cohomology) implies van-

ishing theorems

The classification by Vogan Zuckerman can also be used for non

vanishing theorem.

• If G = SU(p,q ), SU∗(2n), Sp(n,R), Sp(p,q), So(p,q) and Γ

an arithmetic cocompact group. A paper by J.S Li contains

a list of representations π so that

HomG(π, L2(Γ\G)) 6= 0.

and so we get nonvanishing in the corresponding degrees.

5



On the other hand geometric results about Euler characteristics

imply non vanishing theorems

• If G = Sp(2n,R), SU(p, q, SO(2n,2m)), then Hi(ΓsG) has

nontrivial cohomology in the middle degree. (Clozel, Rohlfs-

S, Savin)
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Now suppose that G real points of an algebraic semisimple group,

Γ is a congruence subgroup
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Now suppose that G real points of an algebraic semisimple group,

Γ is a congruence subgroup

As unitary representation of G

L2(Γ\G) = ⊕̃mL2(Γ, π)Vπ ⊕ L2
con(ΓsG)

In our example:

G = Sl(2,R), Γ subgroup of Sl(2,Z).

Γ\X has finite volume, but it is not compact.

In analytic number theory it is proved that classical cusp form

are in L2(Γ\G)
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We have a choice of cohomology theories. We can consider

• H∗
L2(Γ\X) L2–cohomology

• H∗2(Γ\X) cohomology represented by harmonic square inte-

grable forms.

• H∗deRham(Γ\X)

All give interesting information and results
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Problem: HL2(Γ\X) maybe infinite dimensional. But if not

Theorem 2. (Borel +......)

Suppose dim HL2(Γ\X) <∞ then

HL2(Γ\X) = ⊕π∈ĜmL2(Γ, π)H∗(g,K, π).

The sum is finite (and may be restricted to those unitary repre-

sentations π ∈ Ĝ with trivial infinitesimal character).
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Warning: There is map

H∗
L2(Γ\X)→ H∗(Γ\X)

but this map is not injective. It is an open problem to determine

the kernel.

It is also not surjective.
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Warning: There is map

H∗
L2(Γ\X)→ H∗(Γ\X)

but this map is not injective. It is an open problem to determine

the kernel.

It is also not surjective.

In our example:

The constant function is square integrable

Thus the trivial representation Id is a direct summand of L2(Γ\G)

H2(g,K, Id) = C since the volume form on G/K is right invariant

under G.

But Γ\X is not compact and hence H2(Γ\X) = 0.
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Important Theorems

Let A(Γ\G) be the space of automorphic forms on Γ\G

In our example: The automorphic forms on the upper half plane

(holomorphic cusp forms, Eisenstein series, Maass forms ) lift to

automorphic functions on Γ\Sl(2,R)

Theorem 3. (Franke)

H∗deRham(Γ\X) = H∗(g,K,A(Γ\G))
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In other words :

H∗deRham(Γ\X)

is related number theory and to automorphic forms.
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In other words :

H∗deRham(Γ\X)

is related number theory and to automorphic forms.

but as we will see it is complicated to understand in detail.
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Towards the cuspidal contribution to cohomology

In our example: Recall that the cusp forms on the upper half

plane (Holomorphic and anti holomorphic cusp forms, and Maass

forms lift to square integrable functions on Γ\Sl(2,R). The clo-

sure of this space is denoted by

L2
cusp(Γ\SL(2,R)) ⊂ L2(Γ\SL(2,R)).
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In our example: Recall that the cusp forms on the upper half

plane (Holomorphic and anti holomorphic cusp forms, and Maass

forms lift to square integrable functions on Γ\Sl(2,R). The clo-

sure of this space is denoted by

L2
cusp(Γ\SL(2,R)) ⊂ L2(Γ\SL(2,R)).

We can also define for other groups
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cusp(Γ\G) ⊂ L2(Γ\G)
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Towards the cuspidal contribution to cohomology

In our example: Recall that the cusp forms on the upper half

plane (Holomorphic and anti holomorphic cusp forms, and Maass

forms lift to square integrable functions on Γ\Sl(2,R). The clo-

sure of this space is denoted by

L2
cusp(Γ\SL(2,R)) ⊂ L2(Γ\SL(2,R)).

We can also define for other groups

L2
cusp(Γ\G) ⊂ L2(Γ\G)

By a theorem of Piatetskii-Shapiro and Gelfand

L2
cusp(Γ\G) = ⊕π∈Ĝumcusp(π,Γ)π.
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Let

J : HomK(∧∗p, C∞(Γ\G) ∩ L2
cusp(Γ\G))→ HomK(∧∗p, C∞(Γ\G)).
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Let

J : HomK(∧∗p, C∞(Γ\G) ∩ L2
cusp(Γ\G))→ HomK(∧∗p, C∞(Γ\G)).

Theorem 4. (Borel)

J∗ : H∗(g,K,C∞cusp(Γ\G))→ H∗(g,K,C∞(Γ\G))

is injective.

14



Let

J : HomK(∧∗p, C∞(Γ\G) ∩ L2
cusp(Γ\G))→ HomK(∧∗p, C∞(Γ\G)).

Theorem 4. (Borel)

J∗ : H∗(g,K,C∞cusp(Γ\G))→ H∗(g,K,C∞(Γ\G))

is injective.

The image of J∗ is the cuspidal cohomology

H∗cusp(Γ\X) ∼= ⊕π∈Ĝumcusp(π,Γ)H∗(g,K, π).
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In our example: G = Sl(2,R)

From the last lecture :
π is an irreducible infinite dimensional representation with H∗(g,K, π) 6=
0 implies π has cohomology in degree 1.

This representation π is generated by the lift to Γ\Sl(2,R) of a
classical holomorphic or anti holomorphic cusp form .

mcusp(π,Γ) is the dimension al the space of classical holomorphic
cusp forms of weight 2 on Γ\H.

Note: The cohomology doesn’t give us any information about
the Maass forms.
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Towards understanding the part of the cohomology
contributed by the cusps of Γ\G

We consider the Borel Serre compactification Γ\X of Γ\X

In our example : we compactly Γ\X by adding a circle at infinity
at the cusp.

Borel-Serre proved:

H∗(Γ\X,C) = H∗deRham(Γ\X,C)

Consider the restriction to the boundary

Res∗ : H∗(Γ\X,E)→ H∗(∂Γ\X,E)

H∗! (Γ\X,E) be the kernel of Res.
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The cohomology classes which have a nontrivial restriction to

a face of the Borel Serre compactification are called Eisenstein

cohomology classes.

In our example: G = Sl(2,R)

H∗deRham(Γ\X,C) = H∗! (Γ\X,C)⊕H∗Eis(Γ\X,C)

and

H∗! (Γ\X,C) = H∗cusp(Γ\X,C)

Caution: Unfortunately both of these statement are not

true in general.
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To understand the Eisenstein classes we have to get some un-

derstanding of the Borel Serre compactification and use it to

construct a subspace of the space of automorphic forms.

Assume that Γ is a congruence subgroup and Γ\G not compact.

Thus there exist nontrivial parabolic subgroups P defined over

Q, P can be written as a product of a Levi subgroup L and a

unipotent radical U

We can write b ∈ B is of the form b = lu with l ∈ L , u ∈ U . We

can write L= MA where are is the maximal abelian connected

subgroup in the center of L
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In our example: G= Sl(2,R),

The subgroup B of upper triangular matrices is a parabolic sub-

group.

Let L be the diagonal matrices in B.

U the subgroup of B with diagonal entries (1,1).

L is the Levi subgroup of B and U the unipotent radical. A are

the diagonal matrices in L with positive entries M = +/− I
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The Borel Serre compactification of Γ\X is obtained as fol-

lows: For each rational parabolic P, choose a boundary face

e(P ) attach the boundary face e(P) at ∞ at X and form the

completion X ∪
⋃
P e(P ). Γ acts continuously on it. The quo-

tient Γ\X∪
⋃
P e(P ) is the Borel Serre compactification Γ\X with

boundary ∂Γ\X.
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The Borel Serre compactification of Γ\X is obtained as fol-

lows: For each rational parabolic P, choose a boundary face

e(P ) attach the boundary face e(P) at ∞ at X and form the

completion X ∪
⋃
P e(P ). Γ acts continuously on it. The quo-

tient Γ\X∪
⋃
P e(P ) is the Borel Serre compactification Γ\X with

boundary ∂Γ\X.

In our example: G = SL(2,R) Rational parabolic subgroups cor-

respond to rational points in the boundary of X and e(P ) =

Γ ∩ U\U .
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Construction of submodules of A(Γ, G)

For a rational parabolic subgroup P = LN we define ΓP = Γ∩P ,

and ΓL = Γ ∩ L and let πL is an irreducible subrepresentation of

of L2
cusp(ΓL\L).

Consider the space

I(P, πL, ) = {f ∈ C∞(ΓPALN\G,VπL)|f(lg) = πL(l)f(g) for g ∈ G, l ∈ L}

We define for a character µ of A an action of G on

I(P, πL, µ)(g) : I(P, πL, )→ I(P, πL, )
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We define the Eisenstein intertwining operator

E(P, πL, µ) : I(P, πM , µ)→ A(Γ\G) ⊂ C∞(Γ\G)

by

(E(P, πL, µ)f)(g) =
∑

γ∈Γp\Γ
f(γg)

for f ∈ I(P, πL, µ),. This operator can be continued to a mero-

morphic function of µ with singularities on a finite number of

hyperplanes.

In our example: G = Sl(2,R)

After unwinding all the definitions we see (E(P, πL, µ)f)(g) is an

Eisenstein series.
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Note We may replace this Eisenstein intertwining operator by
an normalized operator to take care of some of the convergence
problems.

Then

E(P, πL, µ)∗ : H∗(g,K, I(P, πL, µ)⊗ E)

→ H∗(g,K,A(Γ\G)) = H∗(Γ\X)

The nonzero classes in the image of E(P, πL, µ)∗ for a rational
subgroup P, a dominant character µ of L and a representation
πL in L2(ΓL\L/A) are called Eisenstein classes.

Their restriction to the face e(P ) of the Borel Serre compactifi-
cation is nonzero.
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Computing the Eisenstein cohomology

If the operator Eisenstein operator is injective H∗(g,K, I(P, πL, µ))

and it image is know.

If the Eisenstein operator is not injective then except for groups

of rank one and some small groups no complete results are

known.
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