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Finite dimensional Banach Spaces

Fix p prime, and let | - |, be the p-adic absolute value on Q with |p|, = p~ .

max(|z|p, [Ylp)-

It satisfies |zy|p, = |2|plylp, and |z + y|p <

Let Q, = @ be the completion, Z, = {x € Q,, |z|, < 1}. Can also construct algebraically by Z, = lim Z/p"Z, Qp = Zy[1/p],
but we will focus on the analytic viewpoint.

Let Q, be the algebraic closure of Q, ([Q, : Q,] = o since, e.g., 2™ — p is irreducible in Q,[z] for all n).
| - |, extends uniquely to Q, and Gg, = Gal(Q,/Q,) acts via isometries.
Let C, = Q,. Then Gg, C C, and Gg, = Autcont(Cp).

Note: C, = C as fields, but to find such an isomorphism we need to invoke the axiom of choice, so we should forget
that it exists at all. We should think of [C,, : Q,] like [C : Q] since both are uncountable.

Tate (1966): C, does not contain 2mi. Hint — loge?™/P" = 0, where

log(x) = Z (_1)#(1: - 1"

We have an exact sequence

lo,
0 — ppo — B(1,17) g—>(Cp —0

We have
o (2P ) = ex(@)2milp"

and applying log we get o(27mi) = x(0)27i, which by Tate implies 27i = 0.

Fontaine (1980) constructed a natural ring B, 3 2mi = t with an action of Gg,. The action satisfies o(t) = x(o)t.
There is a map 6 : B;R — C,, with kernel generated by .

Note: Bjp = C,[[t]] as rings, but again need the axiom of choice to find such an isomorphism, so we should not think
of it this way.

Bl./t?Bi, is the completion of Q, for |- |,1 which is defined as follows: for € Q,, we can write z = Q(m) where
Q € Qp[pn][X] and 7 is killed by an Eisenstein polynomial P. Then

dr _ —Q'(m)

dp P'(7)

and
dzr

o)

|[p,1 = max(|z]p, |

1



There is an exact sequence

0 ——=tB,/t? —— B, /t? ——= B/t —=0

Cpt C,

Let U = {(z0, 21, .... T, ...), T € B(1,17), 2P ., = x,,}. There is a commutative diagram

log

+
BdR

From this we obtain

So U = C, ®Q, as Q,-vector spaces.

O ¢, the Frobenius. The map log factors as log : U — (BF

cris

B}, < Bi, B

cris cris

generally, we have

#=P (since loga? = plogz). More
g g

0 — Qut"™ —= (B,

) g — Bl /t" ——=0
Problem: C, = C, ® Q, as @, vector spaces; how to distinguish?

Finite dimensional Vector Spaces ( 2000, Fontaine-Plut, Fargues, Scholze).

A Banach Q-algebra ( [[zy|| < [lallllyl], ||z + 9l < max(|lz|l,[]yl}) ) A is nice if [|o]] = maxpao, |s(@)] and @ — a7 is
surjective. E.g., A = C,,.

A Vector Space is a functor from nice algebras to Q,-vector spaces. Examples:
-V a finite dimensional Q,-vector space, V(A) = VVA, V(A1) LIS V(A2) .
- Ve VE(A) = A%

A Vector Space W is finite dimensional if it can be presented as
0—— 1V,

AN

0 1 W’ v 0

\

W——0

Define dimW = d, htW = dimg, V1 — dimg, V2, and DimW = (dimW, htW).

Theorem. (1) DimW is well-defined
(2) For f:W; — Ws, kerf and Imf are finite dimensional Vector Spaces, and DimW; = Dimkerf + DimImf.
(3) If dimW = 0 then htW > 0.
(4) W < V! implies that W is V' or finite dimensional over Q,, and in particular htW > 0.

Example. (1) For m > 1, B, = B}, /t™B . DimB,, = (m,0).



(2) For a,b, Uy = (BF,.)¢"=P". DimU, , = (b, a). Cf. before, where we had

cris)
0—— @ptm - (B:;“is)sa:pm - B;—r/tm —0
(0,1) Ui,m (m,1) B, (m,0)

Comparison theorems and periods (§g, = = 2mi)

Let X /Q be projective and smooth. There is a pairing
Hjr(X(C)) x Hi(X(C),2) - C
given by (w,u) = Scw. This induces an isomorphism

C®HE(X(C)),Q) = C® Hix(X)

Note we have Q, ® H5(X,Q) = Hélt(X@, Qyp).

There is a comparison theorem
Bigll/t]® Hélt(X@v Q) =B ® Hip(X)
The isomorphism respects the actions of G, (induced by the action on étale cohomology, the action on B;R, and the trivial

action on de Rham cohomology) and the filtrations (induced by the powers of ¢ filtration on B;R, the trivial filtration on
étale cohomology, and the Hodge filtration on de Rham cohomology).

The same is true for B

cris

if X has good reduction, in which case the isomorphism also respects the Frobenius ¢.

Thanks to a lot of work, for  >> 0, there is an exact sequence

= Hj — (t7"B;, ® Hjp)?=' —— (17" B ® Hj) [FIl’ —— H{' —— ..

(0,a;) (bi,ci) (b5,0) (0,ai41)

All of these spaces are C,, points of finite dimensional Vector Spaces, with the Dimensions listed below each term above. We
can use this to prove that the exact sequence splits into short exact sequences, i.e. that ¢ is surjective: First, observe that
because the codomain of ¢ is a successive extension of V'’s, the fourth property of Dim in the theorem above implies that
ht(Ime) > 0. This implies ht(coker:) < 0 (their sum is 0). On the other hand, dim(coker:) = 0 because it injects into a space
of dimension (0, a;+1), and thus ht(coker:) = 0. Thus Dim(cokert) = (0,0) and coker: = 0.



