


Branching laws for non-tempered representations

Dipendra Prasad
Tata Institute of Fundamental Research

Automorphic forms, Shimura viarieties, Galois representations, and L-functions
MSRI

December 03, 2014

(joint work with Wee Teck Gan and B. Gross)

Dipendra Prasad Tata Institute of Fundamental Research Branching laws for non-tempered representations



Introduction

Branching laws for compact unitary groups (from U(n + 1) to
U(n)):

λ = {λ1 ≥ · · · ≥ λn+1}

πλ|U(n) =
∑

πµ,

where µ runs over

λ1 ≥ µ1 ≥ · · · ≥ λn ≥ µn ≥ λn+1.

Two features of this branching law may be noted.

1 Multiplicity one.

2 Explicit description depends on a parametrization of all
irreducible representations, in this case by the theory of
highest weights.
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Introduction

We are interested in similar branching laws for real and p-adic
groups for representations which are typically infinite dimensional.
I will concentrate mostly on the p-adic case where we will consider
representations of a p-adic group on a vector space over C, and
the representations will be smooth.

Branching laws will be understood in the sense of

HomH(π1, π2) 6= 0.

It may be remarked that a priori the space

HomH(π1, π2)

may be identically zero, or may be identically infinite dimensional!
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Introduction

Branching laws that we consider are for pairs of groups and
subgroups which are:

GLn+1 ⊇ GLn

SOn+1 ⊇ SOn

Un+1 ⊇ Un

and some more which go under the name of Bessel subgroup, and
Fourier-Jacobi subgroup, but these we will not discuss here.
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Introduction

One of the first theorems that one proves for all these branching
laws is the following multiplicity one theorem.

Theorem (Aizenbud, Gurevitch, Rallis, Schiffmann)

For groups (G ,H) as above,

dimHomH(π1, π2) ≤ 1,

for irreducible admissible representations π1 of G , and π2 of H.

Given this theorem, the main question to understand is when

dimHomH(π1, π2) 6= 0.
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Introduction

Theorem

For π1 an irreducible admissible generic representation of GLn+1,
and π2 of GLn, dimHom(π1, π2) = 1.
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Introduction

Theorem (Waldspurger, Moeglin-Waldspurger, Beuzart-Plessis)

For pair of groups (G ,H) as above,

1 ∑
π1∈Π1(G),π2∈Π2(H)

dimHom(π1, π2) ≤ 1.

2 ∑
H′⊆G ′

∑
π1∈Π1(G ′),π2∈Π2(H′)

dimHom(π1, π2) = 1,

where the pairs H ′ ⊆ G ′ vary over all pure inner forms of a given
pair (G ,H), and Π1(G ) (resp. Π1(H)) denotes an L-packet of
representions on G (resp. H) which contains a generic
representation.
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Introduction

For example for unitary groups over reals, we have the pairs:

U(n, 0) ↪→ U(n + 1, 0)

U(n − 1, 1) ↪→ U(n, 1)

...

U(0, n) ↪→ U(1, n)
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Review of Local Langlands Correspondence: Harris, Taylor,
Henniart, Arthur...

For a reductive algebraic group G over a local field, if Π(G )
denotes the set of isomorphism classes of representations of G , and
Σ(G ) denotes the set of equivalence classes of (admissible)
parameters for G , then there is a surjective map with finite fibers:

Π(G )→ Σ(G ),

whose fibers are called the L-packet of representations on G .

Representations of pure inner forms of G with a given parameter ϕ
are in bijective correspondence with Ŝϕ, where Sϕ denotes the
group of connected components of the centralizer of the parameter
ϕ.
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Review of Local Langlands Correspondence

The component groups in the cases being considered are
elementary abelian 2 groups, i.e., (Z/2)d , explicitly parametrized
by irreducible self-dual summands of the correct parity in the
representation

ϕ : W ′
k → LG → GLn(C).

The distinguished member (π1,0, π2,0) with

dimHomH(π1,0, π2,0) = 1,

corresponds to the character on the component group (which is
essentially)

Sϕ1 × Sϕ2 → Z/2

ϕ1,i → ε(ϕ1,i ⊗ ϕ2)

ϕ2,i → ε(ϕ1 ⊗ ϕ2,i ).
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Why care about nontempered branching!

Example 1 (Harder, Langlands, Rapoport):

Let K be a quadratic extension of a number field k , π a cuspidal
automorphic representation of GL2(AK ) with trivial central
character on A×k . Then,∫

A×k GL2(k)\GL2(Ak )
f (h)dh 6≡ 0

if and only if L(s,As π) has a pole at s = 1.
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Another Example

Example 2 (Gelbart, PS, Rogawski): U(1, 1) ↪→ U(2, 1).∫
U(1,1)(k)\U(1,1)(Ak )

f (h)dh 6≡ 0

if and only if

(i) π = ⊗vπv is locally generic at all the places v ;

(ii) L(s,BC(π)) has a pole at s = 1.
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Arthur parameters

The non-tempered representations that we will consider in this
lecture are those which arise as local components of automorphic
representations, and which are in particular unitary representations.
These are parametrized by Arthur by a variant of the Weil-Deligne
group:

ψ : W ′
k × SL2(C)→ LG

where W ′
k = Wk or Wk × SL2(C) depending on whether k is

Archimedean or not, and where ψ restricted to Wk has bounded
image in the dual group.
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Arthur parameters

Let ϕψ be the composition:

W ′
k →W ′

k × SL2(C)→ LG ,

where the mapping from W ′
k to SL2(C) is given by the diagonal

map (ν1/2, ν−1/2).

Associated to ψ, Arthur attaches a finite set Π(ψ) of
representations of G (k) which contains the set of representations
in the L-packet associated to ϕψ.

In this lecture we will consider only those representations of
G (k) which belong to the L-packet associated to the
Langlands parameter φψ associated to an A-parameter ψ.
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Theorem for GLn

Theorem

Let π1 be an irreducible admissible representation of GLn+1(k)
with A-parameter, i.e., a representation of W ′

k × SL2(C), given by

σ1 =
d∑

i=0

(σ+
1,i ⊕ σ

−
1,i )⊗ Symi (C2),

and π2 an irreducible admissible representation of GLn(k) with
A-parameter (of dimension n) given by

σ2 =
d∑

i=0

σ+
1,i ⊗ Symi+1(C2)⊕

d∑
i=0

σ−1,i ⊗ Symi−1(C2)⊕ tempered,

then dimHom(π1, π2) = 1 for an arbitrary tempered part in σ2.
Conversely, if dimHom(π1, π2) = 1, then the parameters of π1 and
of π2 can be expressed in this form.
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Theorem for GLn

Remark: The theorem roughly says that any non-tempered part of
π1 corresponding to Symi (C2) must have a counterpart either in
Symi+1(C2) or Symi−1(C2) , thus the nontempered part of π1

determines the nontempered part of π2 with finite ambiguity.
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Some examples for GLn

Example 1: Classification of representations of GLn+1 which carry
trivial invariant form for GLn:

(a) Since the trivial representation of GLn+1 corresponds to
Symn(C2), and the trivial representation of GLn corresponds to
Symn−1(C2), this is certainly an allowed branching by our recipe.
The others being,

(b)
Symn−2(C2)⊕ tempered of GL2
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Some examples for GLn

Example 2:

πn ⊗ Sym1(C2),

a Speh module on GL2n(k) associated to a cuspidal representation
πn of GLn(k). In this case the only option for σ2 by our recipe is,

σ2 = πn ⊕ arbitrary tempered,

so only generic representations appear in this branching.
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Comparison with the work of Clozel and Venkatesh

A paper of Clozel [IMRN, 2004] based on elaboration of Arthur’s
work, and the Burger-Sarnak principle, proves that given a
reductive subgroup H of a reductive group G , there is a map from
unipotent conjugacy classes in the L-group of G to the unipotent
conjugacy classes in the L-group of H which underlies the
restriction problem in the unitary case (direct integral and all
that!),

i.e. the restriction of a representation of G , with an
A-parameter containing a unipotent conjugacy class uG of LG
contains only those representations of H in the spectral
decomposition upon restriction to it which have a particular
unipotent conjugacy class uH of LH.
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Comparison with the work of Clozel and Venkatesh

Clozel’s theorem has been made precise in some cases by A.
Venkatesh [2005]. For example in the restriction problem from
GLn+1(k) to GLn(k), if the unipotent element in GLn+1(C)
corresponds to the partition u = n1 ≥ n2 ≥ · · · ≥ nr ≥ 1,

then the
only unipotent element of GLn(C) involved is the one
u− = n1 − 1 ≥ n2 − 1 ≥ · · · ≥ nr − 1 ≥ 0, omitting those ni which
are 1, and adding a few 1’s at the end if necessary.

There is an analogous statement for induction of unitary
representations of GLn(k) to GLn+1(k).
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Comparison with the work of Clozel and Venkatesh

The important point to note is that for both induction and
restriction questions in this unitary context, one goes from less
tempered to more tempered representations (such as in the
Harish-Chandra’s Plancherel decomposition for the space
L2([G × G ]/∆(G )), and in particular, there is no Frobenius
reciprocity for unitary representations, whereas we are concerned
with admissible representations here which do have Frobenius
reciprocity.

One way to fix this asymmetry, and the corresponding lack of
Frobenius reciprocity, is to have the unipotent conjugacy classes
u1, u2 satisfy,

1 u2 ≥ u−1 ,

2 u1 ≥ u−2 .

Our theorem satisfies these in-equalities.
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Classical groups, the local case

Now we discuss branching laws for classical groups emphasizing the
case of orthogonal groups. Thus we discuss the branching laws
from SO(n + 1) to SO(n), more generally from SO(m) to SO(n)
with n + 1 ≡ m mod 2 corresponding to Bessel models.

Let ψ1 : W ′
k × SL2(C)→ LSOm and ψ2 : W ′

k × SL2(C)→ LSOn

be A-parameters with the corresponding Langlands parameters
φψ1 : W ′

k → LSOm, and φψ2 : W ′
k → LSOn.

Let π1 be an irreducible admissible representation of say SOm(k)
and π2 of SOn(k) with m ≥ n belonging to the L-packets
associated to the Langlands parameters φψ1 : W ′

k → LSOm(C),
and φψ2 : W ′

k → LSOm(C).
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Classical groups, the local case

The L-groups of the groups SOm(k) and SOn(k) are the usual
orthogonal and symplectic groups which come equipped with their
natural representations.

When we talk of L(s, π1 × π2) below, it is
for the tensor product of the natural representations of the two
L-groups involved. We will also need the adjoint representation of
the L-group which is used to define the adjoint L-function.
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Classical groups, the local case

Conjecture

Let π1, π2 be irreducible admissible representations of
SOm(k), SOn(k) belonging to L-packets associated to φψ1 and
φψ2 , with m > n, and m − n ≡ 1 mod 2. Then if π2 appears in the
Bessel model of π1,

1. The Langlands parameters φψ1 and φψ2 considered as
representations of W ′

k inside GLm′(C) and GLn′(C) are as in
the theorem on GLn(k) (the tempered part being arbitrary
but of appropriate size).

2. If the Langlands parameters φψ1 and φψ2 are as in 1., then the
(Vogan) L-packet of representations has a unique member
with Hom[π1, π2] 6= 0.

3. The ε-factors constructed out of possible symplectic root
numbers just as in the earlier works tells which member of the
L-packet has the invariant form.
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Classical groups, the local case

Remarks: 1. For representations π1 and π2 appearing in the
previous conjecture, the L-function

L(s + 1/2, π1 × π2)

L(s + 1,Adπ1)L(s + 1,Adπ2)
,

is not zero (but can have a pole) at s = 0.

2. For representations π1 and π2 appearing in the previous
conjecture for which the A-parameter is discrete, the L-function

L(s + 1/2, π1 × π2)

L(s + 1,Adπ1)L(s + 1,Adπ2)
,

has neither a zero nor a pole at s = 0.
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An example from the work of Ginzburg, Jiang, Rallis, and
Soudry

In a series of paper by Ginzburg, Jiang, Rallis, and Soudry, the
authors construct backward lifting from GLn(k) to classical groups
typically by constructing a representation of a classical group by
parabolic induction from the representation of GLn(k) which sits
as a Levi subgroup, taking its Langlands quotient, and then taking
some Bessel or Fourier-Jacobi model (which we will still not
define!).

We describe an instance of their work, and how it fits well with our
conjecture.
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An example from the work of Ginzburg, Jiang, Rallis, and
Soudry

The backward lift from GL2n(k) to SO2n+1(k) can be constructed
as follows.

Suppose π is a supercuspidal representation of GL2n(k)
with symplectic Langlands parameter. One induces (a twist of) π
from GL2n(k) which is a Levi subgroup of SO4n(k) to SO4n(k),
and takes an appropriate Langlands quotient at a point of
reducibility, and then compute a Bessel model down to SO2n+1(k).
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An example from the work of Ginzburg, Jiang, Rallis,
Soudry

The Langlands parameter of the representation of SO4n(k) which
is a Langlands quotient at a point of reducibility of the principal
series representation of SO4n(k) is,

σ ⊗ Sym1(C2) = σ(ν−1/2 ⊕ ν1/2).

In this case, π2 which is a representation of an odd orthogonal
group must have the parameter σ, and so cannot live on a smaller
orthogonal group than SO2n+1(k), and on SO2n+1 too, there is no
option but to be the backward lift of π1.
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Classical groups, the global case

Here is the conjecture on period integral of Automorphic
representations.

Conjecture

Let F be a number field, and Π1 × Π2 an irreducible automorphic
representation of G = SOn+1(AF )× SOn(AF ) lying in the discrete
spectrum, with H = SOn(F ) a subgroup of SOn+1(F ) defined by a
codimension one subspace W of a quadratic space V over F . Then∫

H(F )\H(AF )
fdh,

is nonzero for some f an automorphic function on G (AF )
belonging to Π1 × Π2 if and only if:

1. The Langlands parameters associated to Π1 and Π2 are in the
relationship as in the local theorem on GLn.
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Classical groups, the global case

Conjecture

2. HomH(Fv )[Π1,v ⊗ Π2,v ,C] 6= 0 for all places v of F .

3.
L(s + 1/2,Π1 ⊗ Π2)

L(s + 1,AdΠ1)L(s + 1,AdΠ2)
,

does not have a zero at s = 0.

Further, if the L-function condition is satisfied, there is a globally
relevant pure inner form G ′ of G with an automorphic
representation Π′1 ⊗ Π′2 nearly equivalent to Π1 ⊗ Π2 which is
globally distinguished by H ′.
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A theorem on L-functions

Theorem

Let F be a number field, and Π1 × Π2 an irreducible automorphic
representation of G = SOn+1(AF )× SOn(AF ) lying in the discrete
spectrum, with H = SOn(F ) a subgroup of SOn+1(F ) defined by a
codimension one subspace W of a quadratic space V over F .

Then if the Langlands parameters associated to Π1 and Π2 are in
the relationship as in the local theorem on GLn, then,

L(s + 1/2,Π1 ⊗ Π2)

L(s + 1,AdΠ1)L(s + 1,AdΠ2)
,

does not have a pole at s = 0, and its zeros at s = 0 correspond to
zeros of L(1/2,Π) where Π is a symplectic representation
constructed as a tensor product of a subrepresentation of Π1 with
a subrepresentation of Π2 (self-dual of appropriate parity).
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1.The L-function,

L(s + 1/2,Π1 ⊗ Π2)

L(s + 1,AdΠ1)L(s + 1,AdΠ2)
,

which seems to play a large role in these branching laws came up
in the work of Ichino and Ikeda who proposed that its
non-vanishing should control nonvanishing of period integrals.

2. The initial suggestion to use epsilon factors in these branching
laws is due to Michael Harris. Thanks Michael!
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