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Modularity of elliptic curves

Let E be an elliptic curve over Q, of conductor N.

Theorem (Modularity Theorem)

The curve E is uniformised by the modular curve Xo(N).

Theorem (Modularity, cohomological version)

The Galois representation H(E) is a quotient of H(Xo(N)).

Notational convention: H'(X) := H..(X, Qp)(i).

HY(E) = H4(E,Q,)(1) = Tate module of E.




Modularity of open elliptic curves

Let E/ = E — X be an open subvariety over Q.

0 — HYE) — HYE') — H°(X)o — 0.

Definition (provisional)

The curve E' is said to be modular if HL(E’) arises as a
subquotient of H1(Y), where Y C Xo(N) is a sub-Shimura variety
of Xo(N).

Question: Which E’ are modular in this sense?



Open Shimura varieties in Xo(/N)

Let O := a quadratic imaginary order.

Yo C Xo(N) = (coarse) moduli space of elliptic curves A with
level N structure and an inclusion ¢ : O — End(A).

Yo(N) := Xo(N) — To.
0 ——= H'(Xo(N)) —= H'(Yo(N)) —= H%(Zo) —=0
A
| ¢ T
(

0 H(E)




The simplest case

Suppose that X = {Py, P} C E(Q).
Assume also HY(E') € ExtlcQ(Qp, H(E)) is non-trivial.

Theorem
The following are equivalent:
@ The curve E' is modular;
@ ords—;1 L(E,s) =1;
© E(Q) has rank one and LLI(E/Q) is finite;
Q dimg, Extf, (Q,, H'(E)) = 1.

This “modularity result” underlies the proof of BSD in analytic
rank < 1.




Sketch of proof

Theorem
The following are equivalent:
@ The curve E' is modular;
@ ords—; L(E,s)=1;
© E(Q) has rank one and LLI(E/Q) is finite;
Q dimg, Ext{, (Qp, HY(E)) = 1.

1 = 2: Gross-Zagier (1985).
2 = 3: Kolyvagin (1989).
3 = 4: Trivial.

4 = 1: Skinner (2013) [Skinner-Urban + p-adic Gross-Zagier].



Let o be an Artin representation:

0: Gal(H/Q) — GL,(C).
Hasse-Weil-Artin L-series:

L(E,o,s) = Hdet(l — 075 frob, ' |(HY(E) ® o))"
¢

ords—1 L(E, 0, s) = dimc homg, (0, E(H) ® C).




Ring class characters

Question: Which x € Ext!(p, HY(E)) are realised in
0 — HY(Xo(N)) — HY(Yo(N)) — H°(Xp) — 07?
HO(Zo) = @y Vy, Vi :=Ind%y,

where 1) are finite order ring class characters.

Let x € Ext}, (Vy, HY(E)) be a non-trivial extension.

Theorem (Expected?)
The following are equivalent:
@ The extension k is modular;
Q ords—1 L(E, Vy,s) =1,
@ dimExt}, (Vy, HY(E)) = 1;
© homg, (Vy, E(Hy) ® C) is one dimensional and the associated
Shafarevich-Tate group is finite.




Modularity

Drawbacks of these modularity results:

@ Very few Artin representations arise in H*(£»). So we can't
hope to tackle many cases of BSD(E, g) in this way.

@ The modularity of elements of Ext}, (V,, H}(E)) is a “rank
one phenomenon”: if the Ext group has dimension > 2, none
of its non-trivial elements are modular!!

Since on some level we hope (expect?) that “every Galois
representation arising in geometry ought to be modular”, we need
to relax the notion of modularity.



Modularity, take 2

First idea: Replace Yo(N) by (open) Shimura varieties.

Question A: Characterize the non-semisimple Galois
representations that are realised in the cohomology of such
varieties.

Question B: Suppose that V; and V5 are irreducible Galois
representations, and that there is a non-trivial x € Ext!(V4, V5)
arising from the cohomology of an open Shimura variety. Is
Ext} (Vi, Va) necessarily one-dimensional?

If the answer to this question were “yes”, it would imply that
E — {P1, P>} is never modular when rank(E) > 2.



Modularity, take 3

Second idea: Allow p-adic limits of Galois representations arising
in the cohomology of Shimura varieties.

This idea goes back (at least) to the work of Deligne-Serre on
Artin representations attached to weight one forms, and is one of
the central themes in the subject.

Theorem (Skinner, Urban)

If L(E,s) vanishes to even order > 2 at s =1, then
dim Ext}, (Qp, HY(E)) > 2.

The extension classes in this theorem are realised as p-adic limits
of (conjecturally semisimple) Galois representations arising in the
cohomology of unitary type Shimura varieties.



A p-adic Gross-Zagier formula in rank two

Goals of this lecture:

@ Describe the construction of two canonical elements in
Ext} (0, HY(E)), coming from p-adic limits of modular,
geometric, but non-semisimple, Galois representations;

@ Relate these canonical classes to Hasse-Weil-Artin L-functions
(both classical, and p-adic);

© Explain why, in some cases, these classes generate rank two
subgroups of the associated Selmer group,

The p-adic Gross-Zagier formula “in rank two" is a linear
independence criterion for two canonical Selmer classes, in terms of
p-adic L-values.



A geometric construction: the set-up

Let f € S»(I'o(N)) be the weight two cusp form attached to E.

Let g and h be modular forms of weight k > 2 level N, N, and
nebentypes Xz, X, for which

@ gcd(N, NgNyp) =1,
@ X :=xg =X,

Deligne's p-adic representations attached to f, g and h are realised
in the middle cohomologies

Ve € HY(Xo(N))(-1), Ve, Viy € H (Wi (NgNp))(1 — k),

where Wi (M):= the Kuga-Sato variety fibered over Xi(M).



Some Galois representations

Let

V,

gh ‘= Vg & Vh(k — ].)

This four-dimensional representation is pure of weight 0 and has
determinant 1.

Vigh == Vi(1) @ Vgh = HY(E) ® Vigh.

This 8-dimensional Galois representation is pure of weight —1 and
is isomorphic to its Kummer dual.



Triple product L-functions
Rankin, Garrett, Harris-Kudla: the L-function
L(fog®h,s):=L(Vi® Vy® Vp,s)

has analytic continuation and functional equation relating s to
2k — s, and vanishes at its center of symmetry:

L(f® g ®h, k) =0.
Beilinson-Bloch:
dim Ext},(Qp, Vign) = ords—x L(f ® g @ h,s) > 1.

In particular, one might hope for a systematic construction,
analogous to the Heegner point constructions, of such extension
classes whose existence is “forced” by a sign in a functional
equation.



Gross-Kudla-Schoen cycles

Let M = lem(N, N, Nj).

The generalised Gross-Kudla-Schoen cycle of weight k is the
diagonally embedded

Wi (M) C X1 (M) x Wi(M) x Wi (M).
It can be slightly modified so that it becomes null-homologous:
A € CHY(Xo(M) x Wi (M) x Wi (M))o.

When k = 2, work of Gross-Kudla as well as of Xinyi Yuan,
Shouwu Zhang and Wei Zhang relates the Arakelov height of A to
L'(f ® g® h,?2).



Gross-Kudla-Schoen classes

p-adic étale Abel-Jacobi map (p [M):
CHX(Xo(M) x Wi (M) x Wi (M))o
— Extg, (Qp, H* 7 (Xo(M) x Wi(M) x Wi (M))(1 — k)
= Exti, (Qp, H'(Xo(M)) © H*H(Wi(M))#?(1 - k)
—  Extg, (Qp, H(E) © Vgn).

Conclusion: When k > 2, we obtain a global geometrically
modular class

H(f7g7 h) € EthG@(QP7 Hl(E) ® Vgh)’

by taking the image of the GKS cycle under the p-adic étale
Abel-Jacobi map.



Gross-Kudla-Schoen classes

The k(f, g, h) are not immediately relevant to BSD(E, p) or to
Beilinson-Bloch in analytic rank > 2, because

© The representation Vg, is not an Artin representation;

@ Results of Gross-Kudla, Yuan-Zhang-Zhang strongly suggest
that x(f, g, h) behaves “much like" Heegner points, and
should be trivial when L'(f @ g ® h, k) = 0.

These “undesirable” features are not preserved under p-adic limits!



Hida families

Let g and h be classical forms of weight one and level M, with
associated Artin representations og and gp; let 0gn == 0g ® 0h.

Hecke polynomial for g: x* — ap(g)x + X(p) = (x — ag)(x — Bg).
8o = g(z) —ogg(pz), g =8(z) — Bea(pz).
Similar notations for h:
ha := h(z) —anh(pz),  hs(z) = h(z) — Brh(pz).

Let g and h be Hida families specialising to g, and h, respectively
in weight 1, and let g, and hy denote their higher weight
specialisations.



Generalised Kato classes

Definition (Rotger, D)
The generalised Kato class attached to (f, g,, ha) is the p-adic
limit

H(fagayha) . (fagkyhk)

= |lim &
k—1

The four canonical classes

’%(ﬂgaaha)? ’%(ﬂga?hﬁ)a ﬁ(fvgﬁvha)a K/(f?gﬂvhﬁ)

belong to Exté@(@,,, HY(E) ® V), and should carry information
about BSD(E, Vgp).



Explanation for the terminology

K(f, 8a; ha) can also be defined when g, and/or h, is an
Eisenstein series rather than a cusp form.

@ When g, and h, are both Eisenstein series of weight one, by
taking p-adic limits of classes k(f, g2, h2), defined from p-adic
étale regulators of distinguished elements in CH?(X1(M), 2):
the Beilinson-Kato elements;

@ When g, is a cusp form and h, is an Eisenstein series, by
taking p-adic limits of classes k(f, g2, h2), defined from p-adic
étale regulators of elements in CH?(Xy(M)?,1): the
Beilinson-Flach elements.

Both Beilinson-Kato and Beilinson-Flach elements can be viewed
as "degenerate cases” of diagonal cycles in CH?(X1(M)3).



The first reciprocity law

The classes k(f, gu, ha) arise as p-adic limits of cristalline
extensions, but there is no reason for them to be cristalline.

Theorem (Rotger, D)

The classes k(f, g, ha), - .. are non-cristalline if and only if

L(f ® g® h,1) #0.

Assume further that pgp(frob,) has distinct eigenvalues. Then the
four generalised Kato classes are linearly independent and their
images generate the “singular quotient”

EXt]CQp (Qp7 Vfgh)
Ethlin(QP’ Vfgh) .




Application to BSD(E, 0gn)

Theorem (Rotger, D)
If L(E, 0gn, 1) # O, then homg, (0gn, E(H) ® C) = 0.

Kato's setting: when g = E1(x1, x2) and h = Ei(1, (x1x2) 1),
then
Ogh = X1+ X2 + X1+ X2,

and one recovers

Theorem (Kato)
If L(E,x1,1) # 0, then homg,(x1, E(H) ® C) = 0.

In this setting, Kato also obtains the finiteness of the relevant
components of the Shafarevich-Tate group using “tame
deformations” of the Kato classes.



The Beilinson-Flach setting

When g is cuspidal and h = E;(1,x 1), then

Ogh = 0g D é_)g>
and one obtains

Theorem (Bertolini, Rotger, D)
If L(E, 0g,1) # O, then homg, (0g, E(H) ® C) = 0.

These ideas have been taken up and developped a lot further by
Kings, Lei, Loeffler, Zerbes, leading (notably) to a proof of the
finiteness of certain p-parts of the Shafarevich-Tate group, lwasawa
main conjectures, etc.

See Sarah's lecture this afternoon...



The first reciprocity law: idea of the proof

Key ingredient: the Hida-Harris-Tilouine p-adic L-function,
interpolating the central critical values L(fx, g¢, hm, €).

Definition

A triple (k, ¢, m) of weights is said to be balanced if neither weight
is > than the sum of the other two. Otherwise, the triple is said to
be unbalanced, and the largest weight is called the dominant
weight.

Ypal := {(k, £, m) such that (k, £, m) is balanced } C (Z=1)3;
Y ¢ :={(k, ¢, m) such that k is the dominant weight.};
Yz := {(k,¢, m) such that £ is the dominant weight.};

Y = {(k, ¢, m) such that m is the dominant weight.}.



The three Hida-Harris-Tilouine L-functions

Note that L(fx ® gz ® hm,c) = 0 for all (k,¢, m) € Lya.

Lf(f, g, h) : interpolates % as (k,t,m) € ¥y;

LE(f,g, h) : interpolates % as (k,¢,m) € X;

Lh(f,g. h) : interpolates % as (k,¢,m) € Xp.



A p-adic Gross-Kudla formula
Let (k,,m) € Tpai.  Dign := (Viggh @ Beris) “%.
logy, : Extg, fin(Qp, Vign) — Fil®(Drgn)”.

10
Fil° Degp = (wrwgwh, 1NfwgWh, WeNgWh, WrlgTh)-

Theorem (Rotger, D)

In the balanced region,
log,(K(f, &, h))(nrwgwn) = (¥) x LL(f, g, h);
Ing(’%(fvga h))(wfngwh) = (*) X Lg(f7g> h)v
log,(k(f, g, h))(wrwgnn) = () Lg(f,g, h).

This formula was inspired by a p-adic Gross-Zagier formula for
Heegner points (Bertolini, Prasanna, D).



The first reciprocity law
Let (k,¢,m) = (2,1,1) € Xy,
exp* : Extlc@p((@p, Vigh)/ Ext, — Fil® Dggp = Fil°(Df) ® Dgy,.

Theorem (Rotger, D)
exp:‘,(m(f,ga, ha)) ~ L,’;(f,g, h) - wfngnﬁ ~ L(f, g, h1).

Proof: Perrin-Riou:

(k,e,m)li,rg(z,l,l) log,, (K(fk, 8¢ hm)) (g we,wh,,) ~ exp” (K(f, 8a; ha))-
Hence
lim p-adic Gross-Kudla(n¢,wg,wh,, ) = First reciprocity law.

(k,6,m)-—(2,1,1)



The second reciprocity law
If L(f,g,h,1) =0, then the four classes
R(F,8arha),  K(F,8arh),  K(F, 85, ha),  #(f, g5, hp)
belong to Sel,(E, 0gn) C HY(Q, HY(E) ® Vign).
Furthermore, ords—1 L(E, 0gn, s) > 2.
Conjecturally, Sel,(E, ggn) has rank > 2.

The first reciprocity law led to insights for BSD(E, ggp) in rank
zero settings; the second reciprocity law should do something
similar in this rank two setting, by relating

10805 ((f. 8 ha)) = log,(w(f, ga, ha)(wrngny)

to p-adic L-values.



A plethora of p-adic L-functions

There are in fact 12 relevant p-adic L-functions!!

L(Fig, b, Lh(Eg, ) LE(Figy b)), LE(F.g,0hs)
L3(f. 8,0 ha), LE(f.8,.hp), LE(f g4 ha), LE(F, 8, he):
Lp(f g, ha), Lp(f.g,hp), Lp(Fgyha).  LA(F.g, hs);
At (f, g, h) of weight (2,1, 1), there are 5 relevant values:
LE(F. 8ar ha) ~ LE(F, 8ar hg) ~ -+ ~ L(f, g, h,1);

L(f. 8o ha) = LE(f . 8as hs),  LE(f.&p: ha) = LE(F. 8. hp);

LZ(fvga’ ha) = Lg(fvgB» ha)’ Lg(f,ga, ha) = Lg(f,gg, ha)-



The second reciprocity law

Theorem (Rotger, D)
Let L € Cp be given by L2 ~ L§(f, ga, h).

IOgaﬁ(/{(fvgaa hﬁ)) =0, IOgaa(’{(ﬁgOza hﬁ)) = L.

This reciprocity law has been arranged as a 2 x 2 matrix of "“p-adic
Gross-Zagier formulae”, involving a single L-value but two Selmer
classes.

It can be viewed as a Gross-Zagier formula in rank two.



A p-adic Gross-Zagier formula in rank two

Corollary (Rotger, D)

If L§(f, ga, h) # 0, then the classes k(f, ga, ho) and k(f, ga, hp)
are linearly independent in Sel,(E, 0gh)-

Lauder’s algorithms enable the efficient numerical calculation of
L%(ﬁ ga; h)

Many cases where the generalised Kato classes generate a rank two
subgroup of the Selmer group have thus been exhibited
experimentally.



Summary

@ The p-adic world has rich features (notably thanks to the
possibility of p-adic variation), opening up the possibility of
Gross-Zagier formulae for elliptic curves of rank > 1.

@ Things are much less clear in the archimedean setting.

@ Theorems about Selmer groups are very nice ..... theorems
about Mordell-Weil or Shafarevich-Tate are rare and sublime.
Rank two Gross-Zagier is not one of these!!



Happy Birthday Michael!



