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Automorphic representations

Consider cuspidal automorphic rep’s. 7 of GL,(A) such that :
(i) mp is unramified for each prime p.
(il) 7eo is algebraic, i.e. inf 1o, C Mp(C) has integer eigenvalues
ki > ky > -+ > kn,
called the weights of 7.

Set also w(m) = ki — k, : motivic weight of (effective twist of) 7.

General problem : Can we classify those 7 7

Gaétan Chenevier (chenevier@math.cnrs.: Harris conference December 5th 2014

1/18


chenevier@math.cnrs.fr

A motivation : galois representations

Fix a prime £ and an embedding + : Q — Q,.
Consider irred. cont. rep’s p : Gal(Q/Q) — GL,(Q,) such that :

(i) p is unramified outside ¢,

(i) p is crystalline at ¢.

Conjecture (Langlands-Fontaine-Mazur) : There exists a unique bijection
m +— pr such that for all primes p # £

det(T — pr(Frobp)) = vdet(T — c(mp)).
Moreover, the weights of 7w are the Hodge-Tate weights of p, at /.

Regular case : 7+ p has been defined and some properties proved.
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A counting problem

N(ki,- -+ , ko) = number of 7 of weights k; > --- > k,.

Finite by general results of Harish-Chandra.

e.g. N(k)=1, N(k,0)=dimSk;1(SL2(Z)),
. no result for any n > 2 valid for all weights.

Problems : — no discrete series for SL,(R) for n > 2,

— difficult to compute geometric side of trace formula.
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Essentially-self-dual, regular, case

N-t(ki,--- , kn) = subnumber of 7 of such that 7 ~ 7| . |~ki=kn,

Theorem (Ch.-Renard, Taibi) Explicit given formula for N+ (ky,--- , k,)
valid for all n and all ky > --- > k,,, implemented on a computer for
n < 15 (so far). Conditional if two k;'s are consecutive.

Basic idea of proofs. Induction on n. Such a 7 descends to a collection of
aut. rep. of classical groups over Z such that 7, discrete series (Arthur).
Compute (or use known) dim. of certain spaces of aut. rep. of classical
groups, and substract "endoscopic contributions" (Arthur’'s Multiplicity
Formula). Condition "unramified everywhere" important in A.M.F.
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Dim. formula previously known for Sp,, with g <2 (lgusa, Tsushima), get
split SO, with m <5 by exc. isogenies.

Ch.-Renard : proof theorem for n < 5, + conditionnally n =6 and 7 (use
R-anisotropic inner forms to compute dim.).

Taibi : general case. He found an algorithm to compute the "Euler
characteristic of discrete spectrum of split classical groups for any
cohomological weight", starting form Arthur’s formula in his paper
L2-Lefschetz.. As an application, he deduces dimension spaces of vector
valued Siegel cusp forms for Sp,.(Z) for g < 7.
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An (unexpected) application

Applies conjecturally to ((s, Mg n).

Thanks to works of Bergstrom, Faber, van der Geer & Megarbané, it led to
a conjectural purely automorphic expression for this ¢ function for

(g,n) = (3,17).

Two interesting 7's of dimension 6 and weight 23 = dim M3 17 occur
(there are 7 such ess. self. dual reg. 7's).

First case where ((s, Mg ) not entirely explained by Siegel modular forms
of genus < g.
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A different method/result

Theorem : 7 cusp. aut. rep. of GL,(A) satisfying (i) and (ii).
Assume w(m) < 20.Then :

(a) either n <2,

(b) or m is a twist of the unique rep. of GL4(A) sat. (i) and (ii) and with
weights 19 > 13 > 6 > 0.

Known to Serre and Mestre that for w(7) < 11 then n = 1.
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Sketck of proof

Idea in the continuation of ideas of Stark, Odlyzko, Serre, Mestre, Miller :
contradict existence of 7 using analytic properties of A(s, 7 X 1), using
Riemann-Weil explicit formula.

Let W = Wg/R~o (an extension of Z/2Z by S').
K = Grothendieck ring of C-rep. of W = Z & Ze P, .o Z1

w>0 we

If 7 is the unitary twist of a I1 satisfying (/) and (i), then L(7s) € K
(Clozel purity lemma).

Choice of test function : F: R — R, even, C2, compact support. And
define ®(s) = [ F(t)es=1/2dt, s € C.

Linear map Jg: K — R, Wi —b fRe(s):1/2 (W, s)d(s)ds.
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The explicit formula (following Mestre)

Fix M, M’ sat. (i) and (ii), let 7 and 7" be their unitary twists.
Result of a contour integration 7= [, AW/(S,TF x 7' )®(s)ds.
Set V = L(7) and V' = L(7,).

> 0(u) — 26, 4 (0)

I

—2Jp(V® V') —2Re Z trace(c(mp)* ® C(W:,)k)l:(klog(p)) log(p) '

pk/2

pk
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The inequality

Assume F >0, Re®(s) >0if0 < Res < l,and 7' =7" =T7.
(e.g. F =1f(x/\)/ch(x/2) where f is Odlyzko function and X\ > 0.)
Then JE(V?) < ©(0).

Proposition : For F well chosen, the quadratic form W — Jg(W?),
K — R, is positive definite on K=20.

Proof : a Gram matrix computation using Odlyzko function (A = log9) !

Corollary : Only finitely many possible 7., hence 7 !

List all possible V' with the computer. Get Thm. when w(7r) < 17. A few
possible V in general, regular and with dim V < 5 in all cases. Conclude if
7 is selfdual.
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End of proof

Show that when 7 exists, then there is a unique one.
Observation of Taibi : let 7y, ..., 7, be k different aut. rep. of GL,(A)
such that L(7) =~ V. Then :
5 1
Proof : same as before applied to A(s, (®jm;) ® (7).

Check that for all previously found V then k < 1. [

Gaétan Chenevier (chenevier@math.cnrs.: Harris conference December 5th 2014 11 / 18


chenevier@math.cnrs.fr

Arthur-Langlands conjecture

G reductive gp. scheme over Z

~

G = red. group over C dual to G(C)
= Langlands dual of Gg ~ (Gross)

7 discrete aut. rep. of G(A) s.t. WE(ZP) # 0 for all p.
p:G— GL,(C).

Conjecture : 3k > 1, and fori =1,... k, integers d;, nj > 1, and a cusp.
aut. rep. m; of GL,.(A), such that :

(a) n=Yr, diny,
(b) L(s,m,p) = [ T1{5 (s +J — %5t m),
(c) plinf 7o) = @; inf m ® diag(%5L,..., 15%).

If conjecture holds for (m, p), write (7, p) = &;m[d;].
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Two remarks :

(i) If (infreo, @) € Z for each root « of G, then 7; is algebraic up to
twist for each /.

(ii) If p¥ =~ p, then m; selfdual for each i.

Arthur’s theorem : Conjecture holds for (m,St) if G = Sp,, or split SO,
over Z. + Converse result (Arthur’s multiplicity formula).
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Example G = PGSp, = SOs

~

G = Sp4(C)

Fix w > v > 0 odd integers.

The number of cuspidal m of G such that 7w, hol. discrete series of inf.
car. diag(%,%5) (with mult.)

= dimension of a certain space of vector valued Siegel modular forms.

Known formula (Tsushima). For w < 21, dim 0 or 1, non zero iff :

(w,v) = (17,1) (19,7) (21,1) (21,5) (21,9) (21,13).

When v # 1, ¢(m, St) cuspidal as S,4+1(SL2(Z)) = 0.
When v =1, might be A, @ [2] .... and it is (Saito-Kurokawa form).
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Example G = definite SO, for n < 24

n =0 mod 8,

L, = set of even unimodular lattices in R".

Choose L C R".

G = SO, semisimple over Z, G(R) = SO(R"), G = SO,(C).
G(Q\G(A)/G(Z) = Ln

Number of 7 of G such that 7o, = 1 (with mult.)

= [SO(R")\Lnl.

= 1,2,25if n = 8,16,24 (Mordell, Witt, Niemeier).

Question: What are the ¢ (7, St) ?
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Theorem (Ch.-Lannes) They are :

(i) [15] @ [1] and A11[4] @ [7] @ [1] if n = 16.
(ii) the following if n = 24 :

[23] © [1] Sym2Ayg; @ D17[4] @ A11[2] @ [9)]
Sym2Ay; @ [21] Sym2Ag; @ Ays[6] @ [9]
Az1[2] @ [1] @ [19] Axs[8] @ [1] @ [7]
Sym2Ag; @ Age[2] @ [17] N21[2] @ A17[2] © A11[4] @ [1] & [7]
A21[2] © Ar7[2] @ [1] & [15] A1o[4] © Ara[4] & [1] @ [7]
Ago[4] @ [1] © [15] A21,0[2] ® A1s5[4] @ [1] © [7]
Sym2A11 @ A1o[2] @ A1s[2] @ [13] Sym?As11 @ A1e[2] ® A11[6] & [5]
Sym?A11 @ A17[4] @ [13] Sym®Ay; @ Are,7[2] B Ars[2] ® A11[2] & [5]
Agz[6] © [1] @ [11] A21[2] © Aga(8] @ [1] @ [3]
A21[2] © Ags[4] @ [1] @ [11] A21,5[2] © A17[2] © Ana[4] © [1] @ [3]
A21,13[2] © A17[2] © [1] & [11] Sym2Aq; @ A11[10] @ [1]
Sym2A11 @ A1e[2] ® As[2] ® A11[2] @ [9] Ag1[12]

lkeda had found 20 of the 24 parameters (the ones without the A, ,),
building on works of Nebe-Venkov, Freitag-Borcherds-Weissauer.
Unconditional proof.
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Case n = 16.

First check that 7 has a 1J-correspondant on Sp,, with g < 8. (Actually
g =4, as Ug(Eg @ Eg) # U4(Eqs) iff g > 4).

It shows (7, St) exists (Arthur, Rallis), say ¢(m, St) = @;7;[di].
Inf. character : £7,46,--- ,+1,0,0.
In part. w(m;) + dj — 1 < 14 for each i, so m; = 1 or A1 (Theorem).

Only two possibilites : the ones of the statements !
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Happy Birthday Michael
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