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Thurston’s questions

In Thurston’s paper Three Dimensional Manifolds, Kleinian groups,
and hyperbolic geometry (BAMS ’82), he asked 24 questions
which have guided the last 30 years of research in the field. Four of
the questions have to do with “virtual” properties of 3-manifolds:

Question 15 (paraphrased): Are Kleinian groups LERF?

Question 16: “Does every aspherical 3-manifold have a
finite-sheeted cover which is Haken?” This question originated
in a 1968 paper of Waldhausen.

Question 17: “Does every aspherical 3-manifold have a
finite-sheeted cover with positive first Betti number?”

Question 18: “Does every hyperbolic 3-manifold have a
finite-sheeted cover which fibers over the circle? This
dubious-sounding question seems to have a definite chance for
a positive answer.”
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Outline of the talk

If a property holds for a finite sheeted cover of a manifold M, then
we say that M “virtually” has the property.
The goal of this talk will be to explain these questions about
virtual properties of 3-manifolds, and how they reduce to a
conjecture of Dani Wise in geometric group theory. If there’s time,
I’ll describe something about the proof of this conjecture and thus
the resolution of Thurston’s questions.

With the geometrization theorem proved by Perelman ’03
(Question 1 from Thurston’s list), the most interesting case of
questions 16-17 are for hyperbolic 3-manifolds, so we will focus for
the most part on questions about virtual properties of hyperbolic
3-manifolds.
One remarkable feature of the proofs of these topological
conjectures is that they almost entirely use geometric techniques.
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Some hyperbolic manifolds

Hyperbolic 3-manifolds admit a complete Riemannian metric of
constant curvature −1, with fundamental group a Kleinian group
(if it is finitely generated). Classic examples of hyperbolic
3-manifolds are the Seifert-Weber dodecahedral space, the
figure eight knot complement, and the Whitehead link
complement
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Definition

A subgroup L < G is separable if for all g ∈ G − L, there exists
φ : G → K , K finite, such that φ(g) /∈ φ(L).

G is LERF if all finitely generated subgroups are separable. G is
QCERF if G is hyperbolic and quasiconvex subgroups are separable.

Definition

A subgroup L < G is weakly separable if for all g ∈ G − L, there
exists φ : G → K such that φ(L) is finite and φ(g) /∈ φ(L) (K need
not be finite).
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Locally Extended Residual Finiteness

Thurston’s question 15 is whether Kleinian groups are LERF.
LERF allows one to lift π1-injective immersions to embeddings in
finite-sheeted covers (Scott ’78)
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Virtual Haken

A compact 3-manifold M (with hyperbolic interior) is Haken
if it contains an embedded π1-injective surface (e.g. a knot
complement). The Seifert-Weber space is non-Haken
(Burton- Rubinstein- Tillmann ’12), as well as hyperbolic
surgeries on the figure 8 knot complement (Thurston ’78).

A 3-manifold M is virtually Haken if there is a finite-sheeted
manifold cover M̃ → M such that M̃ is Haken, e.g. hyperbolic
surgeries on the figure 8 knot complement are virtually Haken
(Dunfield-Thurston ’03)

Waldhausen ’68 conjectured that every hyperbolic 3-manifold
M is virtually Haken (the virtual Haken conjecture, Question
16).

A fortiori, does M have a finite-sheeted cover M̃ → M with
π1(M̃) � Z? (Question 17)
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Fibered 3-manifolds

A manifold M fibers over the circle if there is a submersion
η : M → S1. Each preimage η−1(x) is a codimension-one
submanifold of M called a fiber. If M is 3-dimensional and fibers
over S1, then the fiber is a genus g surface Fg , and M is obtained
as the mapping torus of a homeomorphism f : Fg → Fg ,

M ∼= Tf =
Fg × [0, 1]

{(x , 0) ∼ (φ(x), 1)}
.
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Virtually fibered 3-manifolds

M is virtually fibered if there exists a finite-sheeted cover
M̃ → M such that M̃ fibers

If M fibers, then b1(M) > 0, so this is stronger than asking
for virtual positive betti number.

There have been several classes of hyperbolic 3-manifolds
shown to virtually fiber, including 2-bridge links, some
Montesinos links, and certain alternating links
(Agol-Boyer-Zhang, Aitchison-Rubinstein, Bergeron,
Chesebro-DeBlois-Wilton, Gabai, Leininger, Reid, Walsh,
Wise).

Thurston asked whether every hyperbolic 3-manifold is
virtually fibered (Question 18)?
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Surfaces in hyperbolic 3-manifolds

If M is a finite volume hyperbolic 3-manifold, and f : Σg → M is
an essential immersion of a surface of genus g > 0, then there is a
dichotomy for the geometric structure of the surface discovered by
Thurston, and proven by Bonahon in general. Either f is

geometrically finite or

geometrically infinite.

The first case includes quasifuchsian surfaces. In the geometrically
infinite case, the surface is virtually the fiber of a fibering of a
finite-sheeted cover of M, and the subgroup f#(π1(Σg )) < π1(M)
is separable. The Tameness theorem (A., Calegari-Gabai) plus
the covering theorem of Canary implies a similar dichotomy for
finitely generated subgroups of π1(M): either a subgroup is
geometrically finite, or it corresponds to a virtual fiber. This result
is used in proving that certain Kleinian groups are LERF, since the
subgroups corresponding to virtual fibers are separable.
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Quasi-fuchsian surface group limit set
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Part of the Peano curve “limit set” of the figure eight fiberR.C. Alperin et al. / Topology and its Applications 93 (1999) 219–259 251

Fig. 16. Successive Jordan partitions of Rc.

The pictures suggests that these approximations will all give embeddings of R into C,
but we have not been able to prove that this is the case.

10. The action of PGL2(Z[ω]) ! C2 on H3

In this section we prove some results about the action of PGL2(Z[ω])!C2 which will

be used in Section 11 to prove Theorem A.

Definitions 10.1. Let x be a point of ∂H3. A horosphere centered at x is a connected

two-dimensional subvariety of H3 perpendicular to all the geodesics which have x as

an end point, and is maximal with these properties. A horoball centered at x is a convex

set bounded by a horosphere centered at x.
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Cubulations

A topological space Y is cubulated if it is homotopy equivalent to
a compact locally CAT(0) cube complex X ' Y . We will be
interested in 3-manifolds which are cubulated.
Remark: If X ' M3 is a CAT(0) cubing of a closed 3-manifold,
then dimX may be > 3. Tao Li ’02 has shown that there are
hyperbolic 3-manifolds M such that there is no homeomorphic
CAT(0) cubing X ∼= M.

Theorems of Sageev ’94 associate a cocompact action of π1(M) on
a (globally) CAT(0) cube complex if M contains a π1-injective
surface. Globally CAT(0) ⇐⇒ simply-connected and locally
CAT(0)
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Cubulations

Sageev’s construction gives a cube complex in which each
immersed essential surface in a 3-manifold corresponds to an orbit
of an embedded hyperplane.

For example, in the case of a surface which is virtually a fiber,
Sageev’s construction gives rise to a crystallographic group action
and an embedded essential surface gives an action on a tree.
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Essential surfaces in hyperbolic 3-manifolds

Theorem (Kahn-Markovic 2009)

Hyperbolic 3-manifolds contain immersed quasi-fuchsian surfaces
which are arbitrarily close to being totally geodesic.

Theorem (Bergeron-Wise 2009)

Closed hyperbolic 3-manifolds are cubulated.

These theorems will be discussed in Jeremy Kahn’s talk.
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Cubulated hyperbolic 3-manifolds

There were many known examples of cubulated hyperbolic
3-manifolds before this theorem, e.g. alternating link complements
[Aitchison-Rubinstein ’92]. Other examples come from tessellations
by right-angled polyhedra and arithmetic 3-manifolds (Lackenby
’08):
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Previous theorem on virtual fibering

Theorem (A. 2008)

If M3 is virtually special cubulated, then M is virtually fibered.

Since M is cubulated, M ' X , where X is a CAT(0) compact cube
complex.
There is a finite-sheeted cover X̃ which is special, and implies that
π1(X̃ ) < RAAG . A strong form of residual solvability for RAAG’s
called RFRS passes to π1(X̃ ) and implies that M is virtually
fibered (A.).
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Theorem on virtual fibering

Theorem (Wise 2011)

Virtually quasi-fuchsian Haken hyperbolic 3-manifolds are virtually
special cubulated, and therefore Haken hyperbolic 3-manifolds are
virtually fibered.

Wise’s theorem gives a different approach to finding cubulations
(based on work with Hsu) than the result of Bergeron-Wise, and
holds in much greater generality than stated here.
As indicated in Grove’s talk, this holds for hyperbolic groups which
admit a quasiconvex hierarchy.
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Wise’s conjecture on virtually special cubulations

Wise conjectured the following in 2011:

Theorem (A. 2012)

Cubulations with hyperbolic fundamental group are virtually
special.

Corollary

Let M be a closed hyperbolic 3-manifold. Then π1M is LERF and
M virtually fibers.

This resolves positively Thurston’s questions 15-18. The proof of
this theorem makes use of Wise’s results, in particular the
Malnormal Special Quotient Theorem.
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Wise’s conjecture

Part of the argument is based on joint work with Groves and
Manning:

Theorem (A.-Groves-Manning 2012)

Let G be a hyperbolic group, and let H < G be a quasiconvex
virtually special subgroup. Then H is weakly separable in G .

The proof of this makes use of hyperbolic Dehn filling, as well as
an inductive method of “height reduction” for quasiconvex
subgroups developed in our previous work and the MSQT.
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Outline of the proof

We’ll discuss the proof in the context of a toy model. Consider a
compact hyperbolic surface X with an immersed geodesic curve:

In fact, in
this picture, the curves are dual to a CAT(0) square complex.
The first step is to construct an infinite sheeted regular cover X
with the elevations of the curves compact by applying weak
separability (in the surface case, this step does not need the
MSQT, just hyperbolic Dehn filling, or rather its ancestor
small-cancellation theory a la Gromov).
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Cover with compact walls

In our particular case, kill the red curves, and the third power of
the blue curves to obtain X :
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Outline of proof

Definition (Crossing Graph)

Let Γ(X ) be a graph with vertex set V (Γ(X )) =W the
hyperplanes of X , and edges (W1,W2) ∈ E (Γ(X )) if W1 ∩W2 6= ∅
or if there is an essential cylinder going between W1 and W2.

Definition (Coloring space)

Let [n] = {1, . . . , n}. Let

Cn(Γ) = {c : V (Γ)→ [n]|c(W1) 6= c(W2),∀(W1,W2) ∈ E (Γ)}

denote the space of n-colorings of the graph Γ.

We regard Cn(Γ) as a closed subspace of the Cantor set [n]V (Γ). If
deg(Γ) ≤ k , then Ck+1(Γ) 6= ∅.
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Colorings and hierarchies

A coloring c ∈ Cn(Γ(X )) gives rise to a hierarchy of X : cut along
the walls colored 1, then the walls colored 2, ..., and finally the
walls colored n.

What is left at the ends are stars of the vertices of X , with
residues of the colorings remaining on the boundaries.
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Colorings of graphs

Lemma

There exists a probability measure µ on Ck+1(Γ) which is
G-invariant.

The proof of this lemma proceeds by coloring the vertices V (Γ)
randomly with n-colors, n ≥ k + 1. The probability that two
endpoints of and edge e ∈ E (Γ) have the same color is 1/n. One
can produce an n − 1-coloring of the vertices, by sending each
vertex colored n each color to the smallest color unused by its
neighbors. By induction then, one produces a measure on
k + 1-colorings of V (Γ) which have probability of coloring the
endpoints of e the same color as 1/n. Taking a weak-* limit of
these measures, one obtains a G − invariant measure µ on
V (Γ)[k+1] which is supported on the colorings of Γ.

Ian Agol The virtual Haken conjecture



Introduction Definitions Virtual fibering Implications Outline of the proof

A random 1000 coloring
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A random 1000 coloring
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Coloring Γ with 7 colors
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Colorings and hierarchies

The probability measure is just an artifice to construct a solution
to the gluing equations. We want to reverse engineer a hierarchy
of a finite-sheeted cover. We have an finite (non-compact)
hierarchy associated to the cover X . The probability measure
allows us to extract some finiteness associated to this hierarchy.
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Polyhedra and facets

Let P denote the stars of vertices of X , which we will call
polyhedra. Let F denote the facets of X , which are dual to each
edge of X , and are the facets of the polyhedra P. Each facet
F ∈ F will be contained uniquely in two polyhedra P,Q ∈ P,
P ∩ Q = F . There are 4 polygons in the example up to the action
of G (we won’t draw P ′ and Q ′ which are duplicates of P and Q).
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Supercoloring

Each polyhedron and facet of X will correspond uniquely to one of
X via the covering X → X . We refine the k + 1-coloring of the
walls W by the coloring of a neighborhood of size j , where j is the
color of a vertex. The facets F ∈ F get super colored by their
corresponding walls, and polyhedra will be super colored by their
facets.
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Polyhedral gluing equations

The variables for the gluing equations will be super colored
polyhedra, and the gluing equations will say that for a given super
colored facet F , the super colorings of P which induce the same
super coloring of F must equal the super colorings of Q which
induce the super coloring of F . We require that the variables are
G-invariant, in which case they are determined by finitely many
variables corresponding to the polyhedra of X (or G-orbits of super
colored polyhedra). The G-invariant measure µ gives us a solution
to the gluing equations with non-negative weights. Then we can
get an integral solution to the gluing equations with non-negative
weights, since the equations are linear equations with integral
coefficients.
We take the integral solution to the polyhedral gluing equations,
and use them to glue up a finite-sheeted cover of X , which is
“modeled” on the hierarchies associated to colorings of X .

Ian Agol The virtual Haken conjecture



Introduction Definitions Virtual fibering Implications Outline of the proof

Gluing up the herarchy

We construct a sequence of (usually disconnected) finite cube
complexes Vj , k + 1 ≥ j ≥ 0, with boundary pattern
{∂1(Vj), . . . , ∂j(Vj)} determined by the unpaired faces colored j .
The final stage V0 will be a finite-sheeted cover of X .
The first stage Vk+1 is obtained by taking a number of copies of
each supercolored polyhedron determined by the integral solution
to the gluing equations.
If we glued the faces of the polyhedra Vk+1 together preserving
colors, then we would obtain a finite-sheeted branched cover of X .
So we have to be careful at each stage that the gluing extends to
an unbranched covering space.
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Gluing polyhedra satisfying the gluing equations

The super coloring guarantees that when we glue together super
colored polyhedra P and Q along the face F so that they satisfy
the gluing equations, then the resulting boundary pattern will be
super colored in a consistent fashion, allowing a hierarchy to be
constructed inductively.
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Gluing up the hierarchy

The base case Vk+1 is the collection of equivalence classes of
polyhedra given by the solution to the polyhedral gluing equations.
Vk is obtained from Vk+1 by gluing the faces labeled k + 1 in pairs
along matching supercolored faces (in our example, k + 1 = 7 is
represented by black, obtaining V6).
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Gluing up the hierarchy

We glue V5 from a cover of V6 by gluing the boundary pattern
∂6V6 (which in our example is colored yellow):

The supercoloring guarantees that the two sides of ∂6V6 have
consistently supercolored walls, and therefore is a finite-sheeted
cover of the wall in a representative coloring of X . The MSQT
allows us to pass to a finite-sheeted cover Ṽ6 in which both sides
of ∂6Ṽ6 match.
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Gluing up the hierarchy

We obtain Vi from Vi+1 by finding a covering space Ṽi+1 → Vi+1

in which the boundary pattern ∂i+1Ṽi+1 may be matched up in
pairs which reverse the coorientations and preserve super colorings.
Constructing this cover requires another application of Wise’s
MSQT.
The cube complex V0 will have no boundary pattern, and thus will
give a finite-sheeted covering space V0 → X and which has by
construction has embedded walls, and therefore a malnormal
hierarchy.
One more application of Wise’s theorem (rather Haglund-Wise)
gives a cover Ṽ0 → X which is special.
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The End

In memory of Bill 1946-2012
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