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Motivation

Question (Gromov)

Does every one-ended hyperbolic group contain a surface
subgroup?

The answer is “yes” for:
» Coxeter groups (Gordon-Long-Reid)

» Graphs of free groups with cyclic edge groups and b, > 0
(Calegari)

» Fundamental groups of hyperbolic 3-manifolds
(Kahn-Markovic)

» Certain doubles of free groups (Kim-Wilton, Kim-Oum)



Motivation

Question (Gromov)

Does every one-ended hyperbolic group contain a surface
subgroup?

The answer is “yes” for:

» Coxeter groups (Gordon-Long-Reid)

» Graphs of free groups with cyclic edge groups and b, > 0
(Calegari)

» Fundamental groups of hyperbolic 3-manifolds
(Kahn-Markovic)

» Certain doubles of free groups (Kim-Wilton, Kim-Oum)

» Random graphs of free groups:

» HNN extensions of free group by random endomorphisms
(Calegari-W)
» Random amalgams of free groups (Calegari-Wilton)



Free groups

Throughout the talk, F is a free group, usually F = (a, b) of rank
2. Capital letters denote inverses: A=a"t, B= b1



(Ascending) HNN extensions

Let F = (a,b) and ¢ : F — F an endomorphism.

Fy=(a,b,t|tat™t = ¢(a), tht~ ' = (b))

Topologically, it's the mapping torus of ¢:



Surface maps into HNN extensions

We understand maps of closed surfaces into HNN extensions by
understanding surface maps (with boundary) into free groups
which “behave nicely” with respect to ¢.



Fatgraphs

A fatgraph (or ribbon graph) is a graph with a cyclic order on the
incident edges at each vertex. A fatgraph can be fattened to a
surface.

We'll always think of our fatgraphs as already-fattened very “thin”
surfaces.



Surface maps into free groups

Surface maps into free groups factor through fatgraph maps.
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Surface maps into free groups

Fatgraph maps can be (Stallings) folded.

A fatgraph map which is folded is 7i-injective.



Surface maps into HNN extensions
We understand maps of closed surfaces into HNN extensions by
understanding iterated surface maps (with boundary) into free
groups, using the infinite cyclic cover. s #(s) ¢(s) ¢(s)
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Surface maps into HNN extensions

Suppose there is a loop in S trivial in F4. Then it lifts to a
compact loop in a compact part of the cyclic cover.

o(s) ¢(s) ¢(s) o(s)




Surface maps into HNN extensions

A compact part of the cyclic cover is just the free group F, so if
S — Fy isn't mi-injective, then SUG(S)U--- U ¢*(S) — F isn't
injective for some k.

s ¢(s)
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Surface maps into HNN extensions

That is, f : S — Fy is injective iff all the surfaces S, S U ¢(S),
SUG(S)U@?(S), ... are injective in F.




Iterated surface maps into free groups
To check if SU@(S)U--- U ¢*(S) is injective in F, we can check
that gluing the fatgraphs produces a Stallings folded fatgraph.

s o(s)  ¢(s)

¢(a) = aabAB



Iterated surface maps into free groups

Problem: gluing fatgraphs along boundaries need not even produce
a fatgraph, let alone a Stallings folded fatgraph.

We need a combinatorial condition on the fatgraph S which
ensures that gluing S U ¢(S) U --- U ¢*(S) is always a Stallings
folded fatgraph.



f-folded surfaces

Consider a fatgraph Y with boundary C + ¢(C~1). The boundary
decomposes into &~ (loops in C) and T (loops in ¢(C~1)).

When we glue ¢(Y) to Y, we will glue ¢(07) in ¢(Y) to dT in Y.
A vertex of 97 is an f-vertex if it is in the image of a vertex in 0™
+

d(a) = aabAB
¢(b)=b

In this case, the
result of gluing is

not folded. .
® f-vertices




f-folded surfaces

We say Y bounding C + ¢(C~1) is f-folded if:
1. Y is Stallings folded.
2. Any vertex in Y contains at most one f-vertex of 9.
3. Any vertex in Y containing an f-vertex of 9" is 2-valent.

4. No vertex in Y contains more than one vertex in 9~




f-folded surfaces

If Y is f-folded, then Y U@(Y)U---U@¥(Y) is Stallings folded.

S |
®(S)
d(S)

As the surfaces pile up, the f-folded condition ensures there is
never folding and the result is a fatgraph.



f-folded surfaces

Proposition
Let Y be a fatgraph map into F with boundary C + qﬁ((;l), such
that Y is f-folded. Then the map of the closed surface Y — Fy is

mi-injective.



Use of the f-folded constraint

The f-folded constraint can be used theoretically to prove that
“random” HNN extensions of free groups contain surface
subgroups (the next talk).

The f-folded constraint can be used experimentally to verify that
specific HNN extensions contain surface subgroups.



Linear programming
Any fatgraph can be built out of pieces: rectangles (edges of the
fatgraph) and polygons (vertices of the fatgraph).
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Each rectangle has two boundary edges, and two inner edges. Each
polygon has only inner edges.

N

Note every type of inner edge appears positively and negatively the
same number of times.



Linear programming

For any given boundary C + ¢~1(C), there are only finitely many
types of polygons and rectangles which could occur in a fatgraph
with that boundary.

Consider the vector space over R spanned by rectangles and
polygons. The condition that they can be glued up into a fatgraph
is verified by checking linear equations (every inner edge appears
positively and negatively the same number of times).

The f-folded constraint is local and linear, so an f-folded surface
can be found by linear programming.



Example: Sapir's group
Let ¢(a) = ab, ¢(b) = ba. Then Fy is Sapir's group. The surface
below is f-folded, so F, contains a surface subgroup.




