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1. Gromov’s Surface Subgroup Question

The following is “Gromov’s Surface Subgroup Question”:

Question: Let G be a one-ended hyperbolic group. Does G
contain a subgroup isomorphic to π1(S) where S is a closed
surface with χ(S) < 0?



Part of a broader set of questions:

1. What “interesting” subgroups does G have?

2. How do you show that a map π1(S)→ G is injective?

3. Is there a “good” surface subgroup? (e.g. quasiconvex, norm
minimizing in a homology class)

Surfaces are a “bridge” from hyperbolic geometry to symplectic
geometry (causal structures, quasimorphisms, scl, etc.)



Strategy: find an intermediate class of groups G so that

1. every one-ended hyperbolic group contains a subgroup in G;

2. every group in G contains a surface subgroup.

Proposal 1: G is the class of one-ended graphs of free groups.

Proposal 2: G is the class of cubulated groups.

Proposition: Every one-ended cubulated hyperbolic group contains
a one-ended graph of free groups (uses Agol’s Theorem).



Previous work: surface subgroups in certain graphs of free groups.

1. C.-: cyclic edge groups and b2 > 0

2. Kim, Kim-Oum, Kim-Wilton: doubles along cyclic edge groups

3. C.-Walker: doubles along high rank subgroups and b2 > 0



Definition: G is a random group at density D if it is obtained
from a free group Fk of rank k ≥ 2 by adding (2k − 1)nD random
relations of length n.

Theorem (Gromov):

1. If D > 1/2 then G is trivial or Z/2Z.

2. If D < 1/2 then G is infinite hyperbolic and one-ended.

3. G is C ′(2D).

Proposal 3: G is the class of random groups (at D < 1/2).



Theorem (Wise): A C ′(1/6) group is cubulated.

Theorem (Ollivier-Wise): A random group at D < 1/6 is
cubulated.

Theorem (Zuk): A random group at D > 1/3 has property (T )
and is therefore NOT cubulated.



2. Statement of Theorems

Definition: Fix Fk , Fl free groups of ranks k, l with fixed
generating sets. A random homomorphism of length n is a
homomorphism

φ : Fk → Fl

sending generators of Fk to random (reduced) words in Fl of
length n.



Theorem (C.-Walker): A random ascending HNN extension of a
free group (of rank ≥ 2) contains a surface subgroup.

Theorem (C.-Wilton): A random HNN extension or amalgamated
free product of free groups with edge groups of rank ≥ 1 contains
a surface subgroup.

Hence a random graph of free groups contains a surface subgroup.

A random group at density D < 1/6 is cubulated, and therefore
contains a (one-ended) graph of free groups.

Question: Is this a random graph of free groups?



Theorem (C.-Walker): A random group at sufficiently low density
D contains a surface subgroup.

The argument probably works for D < 1/12 (so that G is C ′(1/6)).
But maybe the technique can be pushed higher (to D < 1/2?)

The argument is constructive. One can actually build the surface
and (in principle) see that it is injective. For the random graph of
free groups this is effective in practice.

The surfaces are quasiconvex. And there should be many of them
(gCg of genus g � 1).



The surfaces are constructed by a mix of combinatorics and
ergodic theory. The main technical step is to build an injective
surface with prescribed boundary in a free group.

In the language of fatgraphs: given a collection of cyclic words gi
in Fk , we look for a folded fatgraph Y such that ∂S(Y ) = ∪igi .

Theorem (C.-Walker): If the gi are random, such a Y exists.

We build the fatgraph Y by finding pairs of
segments σ, σ−1 with opposite labels in
∪igi , and pairing them. When all of ∪igi is
paired in this way, we will have built a
fatgraph.
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3. Constructing the fatgraphs

Suppose w is a long random reduced word of length n. There are
4× 3m−1 reduced words of length m, for any m, so if v is any
reduced word of length m, the expected number of copies of v in
w is 3

4n/3m.

Chernoff’s inequality says that for m < (1− ε) log3 n, for every
reduced word v of length m, there is an inequality

1− ε ≤ # of copies of v in w

expected # of copies of v in w
≤ 1 + ε

with probability at least 1− O(e−n
c
) (when n is big).

In other words, there is equidistribution at scales below log3 n with
an error that goes to zero exponentially fast.



Step 1: Fold off short loops.

As we read along the word w , look for strings of length 11 of the
form yxuXz for inverse letters x , X , non-inverse letters y , z and
|u| = 7. When we see such a string, we glue x to X and fold off a
short loop. Each short loop is determined by the word u and the
letter x .
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The result of this is to replace a word w of length n by a new word
w ′ of length (1− 9

7α)n and a reservoir L of short loops, of total
length αn.



Step 2: Cancel most of w ′.

Partition w ′ into a sequence of consecutive substrings of length
ε−1 (with a small fixed bit of space between). Match copies of
substrings of the form σ with copies of the inverse substring σ−1.
By Chernoff, we can glue up almost all of w ′ this way.

a

ab

Aa

bAA

Bb

bbaBB

aA

Ab

aA

Abab

A

B

B A B

A a

a B a

B b

b b A

b B

B B a a B

a A

B A

b

The result of this is to replace w ′ of length (1− 9
7α)n with a new

collection w ′′ of loops of total length εn. Let’s assume α� ε.



Step 3: Build W ′′ from the reservoir.

If we have enough short loops of every kind, we can glue them
together to build a copy of W ′′, the inverse of w ′′. This can be
paired with w ′′.
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The result of this is to cancel w ′′ at the cost of slightly adjusting
the inventory in the reservoir. The new reservoir L′ of short loops
still has total length of order αn.



Step 4: Glue up L′.

By Chernoff, the initial distribution of short loops in L was very
close to uniform. After using up εn short loops to cancel w ′′, we
still have a very nearly uniform distribution of short loops in L′ of
total length αn. So all that remains to show is:

Claim: Let L′ be a collection of short loops which is sufficiently
close to uniformly distributed. Then L′ bounds a folded fatgraph.



4. Linear Programming

Let V be the vector space spanned by the set of short loop types,
and let V+ be the positive cone. There is a feasible subcone C of
V+ consisting of formal linear combinations of short loops that
bound a formal linear combination of folded fatgraphs.

Let ∆ denote the simplex obtained
by projectivizing V+, and let
PC ⊂ ∆ be the image of C . We
need to show that the uniform
vector 1 projects into the interior of
PC .



Actually, in principle, the cone C can be computed directly by
linear programming. However, this computation is not possible in
practice.

There are 4376 short loops of length 7, and there are roughly
3× 1015 different kinds of piece in the folded fatgraphs they bound.

Instead, we look for sparse vectors in C — those with very few
nonzero coordinates. A big enough collection of these vectors span
a polyhedron in PC with 1 in the interior.
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