


Lattices, polyhedral complexes, cubulations and
surface subgroups

Anne Thomas

MSRI Hot Topics – Surface subgroups and cube complexes
21 March 2013



Introduction

2007: AIM workshop “Problems in geometric group theory”

2007–2008: Benson Farb, Chris Hruska and I wrote “Problems on
automorphism groups of nonpositively curved polyhedral complexes
and their lattices”. Refereed by Haglund.

Today:

1. Locally compact groups G and their lattices

2. Polyhedral complexes X

3. Applications of Agol’s Theorem to lattices in G = Aut(X )

4. Recent result with Inna Capdeboscq on Kac–Moody lattices
with surface subgroups



Locally compact groups

G locally compact topological group with Haar measure µ

Examples

1. G = (Rn,+) with Lebesgue measure

2. G = SL2(R) =

{(
a b
c d

)∣∣∣∣ a, b, c , d ∈ R, ad − bc = 1

}



Lattices
G locally compact, Haar measure µ

A subgroup Γ < G is a lattice if

I Γ is discrete

I µ(Γ\G ) <∞ (finite covolume)

A lattice Γ < G is

I uniform or cocompact if Γ\G is compact

I otherwise, non-uniform or non-cocompact

Example

Let G = PSL2(C) and let Γ < G be a torsion-free lattice.

I If Γ is uniform, Γ is the fundamental group of a closed
hyperbolic 3-manifold.

I If Γ is non-uniform, Γ is the fundamental group of a finite
volume non-compact hyperbolic 3-manifold.

If Γ has torsion replace manifold by orbifold.



Polyhedral complexes

A polyhedral complex is a CW complex obtained by gluing
together convex polyhedra by isometries along their edges.

All polyhedra from fixed constant curvature space: Sn, En or Hn.

A polygonal complex is a 2-dimensional polyhedral complex.

Examples

1. Trees

2. Products of trees

3. Davis complexes

4. Buildings



Trees

T locally finite tree

G = Aut(T ) is a locally compact group

G non-discrete ⇐⇒ ∃ {gn} ⊂ G , gn 6= 1, so that gn fixes Ball(n)

Example

G = Aut(T ) nondiscrete for T = Tm the m-regular tree, m ≥ 3



Lattices in Aut(T )

T locally finite tree
G = Aut(T ) with Haar measure µ

Γ < G is discrete ⇐⇒ Γ acts with finite stabilisers

Theorem (Serre)

Can normalise µ so that ∀ discrete Γ < G ,

µ(Γ\G ) =
∑

v∈T/Γ

1

|StabΓ(v)|

and Γ uniform ⇐⇒ T/Γ compact.



Uniform tree lattices
Γ < Aut(T ) is a uniform lattice
⇐⇒ Γ acts on T with finite quotient and finite stabilisers
⇐⇒ Γ is fundamental group of a finite graph of finite groups with
universal cover T .

Theorem (Bass–Kulkarni 1991)

Uniform tree lattices are virtually free.

Example

G = Aut(T3)
Γ = π1(graph of groups) ∼= C3 ∗ C3 is uniform lattice in G
µ(Γ\G ) = 1

3 + 1
3 = 2

3

C3 C3

1

1



Non-uniform tree lattices
Γ < Aut(T ) is a non-uniform lattice
⇐⇒ Γ acts on T with infinite quotient and finite stabilisers
growing “fast enough”
⇐⇒ Γ is fundamental group of an infinite graph of finite groups
with universal cover T and the vertex groups growing “fast
enough”

Example

G = Aut(T3)
Γ = π1(graph of groups) is non-uniform lattice in G
µ(Γ\G ) = 1

3 + 1
2 + 1

4 + 1
8 + · · · = 4

3

1 2

3 2 22

22

23

23

24

24

25

1



Tree lattices

Program (Bass, Lubotzky, . . . )

Compare lattices in Aut(T ) to lattices in Lie groups.

Motivation:
I Study lattices in Lie groups via action on symmetric space

e.g. upper half-plane is symmetric space for SL2(R)
I Study lattices in algebraic groups over nonarchimedean local

fields via action on building
e.g. Tq+1 is building for SL2(Fq((t)))



Lattices in Aut(X )

X locally finite polyhedral complex
G = Aut(X ) is locally compact, has Haar measure µ

Γ < G is discrete ⇐⇒ Γ acts with finite stabilisers

Theorem (Serre)

Can normalise µ so that ∀ discrete Γ < G ,

µ(Γ\G ) =
∑

v∈X/Γ

1

|StabΓ(v)|

and Γ uniform ⇐⇒ X/Γ compact.



Cubulating uniform lattices in Aut(X )

X locally finite polyhedral complex
G = Aut(X )

Γ < G is a uniform lattice ⇐⇒ Γ acts properly discontinuously
and cocompactly on X

Let Γ < G be a uniform lattice.

1. By definition, if X is CAT(0) then Γ is a CAT(0) group.

2. By Milnor–Svarc Lemma, if X is CAT(-1) or δ-hyperbolic then
Γ is hyperbolic.

3. By Agol’s Theorem, if X is a δ-hyperbolic cube complex then
Γ is virtually special.



The link condition for polygonal complexes

X polygonal complex

Metrise link Lk(v ,X ) so edge length = angle at v .

Gromov Link Condition:

1. If X is piecewise Euclidean and all embedded circuits in all
links have length ≥ 2π, then X is locally CAT(0).

2. If X is piecewise hyperbolic and all embedded circuits in all
links have length ≥ 2π, then X is locally CAT(-1).

Example

Product of trees is CAT(0)
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Caution: Property (T)

Theorem (Cartwright, M lotkowski and Steger 1994, Żuk 1996,

Ballmann and Świ ↪atkowski 1997, Dymara and Januszkiewicz
2002)

For certain simplicial X , G = Aut(X ) has Property (T).

G has (T)
=⇒ every lattice in G has (T)
=⇒ no lattice in G can be cubulated.



Caution: products of trees

Theorem (Burger–Mozes, 2002)

Suppose X = Tp × Tp with p prime, and G = Aut(X ). There is a
torsion-free uniform lattice Γ < G which is a simple group.

Corollary

There is a NPC finite square complex with no finite-sheeted covers.



(k , L)-complexes

Given k ≥ 3 and a graph L, a (k, L)-complex is a polygonal
complex such that

1. every face is a regular k-gon

2. the link of every vertex is L



Examples of (k , L)-complexes

I Product of trees: k = 4, L = Km,n



Examples of (k , L)-complexes

I Bourdon’s building: k ≥ 5, L = Kv ,v



Examples of (k , L)-complexes

Theorem (Świ ↪atkowski 1998)

Let k ≥ 4 and L be the Petersen graph. Then there is a unique
CAT(0) (k , L)-complex X . Moreover, Aut(X ) is nondiscrete and
Aut(X ) acts transitively on flags in X .

A flag in a polygonal complex X is a triple (v , e, f ) where vertex v
is contained in edge e is contained in face f .



Lattices on (k , L)-complexes
k ≥ 4, L the Petersen graph
X the unique CAT(0) (k , L)-complex

Work in progress with Inna Capdeboscq and Michael Giudici:
constructing flag-transitive uniform lattices in Aut(X ) as
fundamental groups of triangles of groups (Gersten–Stallings).

Example

〈a〉 ∼= 〈b〉 ∼= 〈c〉 ∼= C2

〈a, b〉 ∼= D2k

A5 ≤ S5 = Aut(L)
A5

π
5

S3 × 〈b〉
π
2

π
k〈a, b〉 × 〈c〉

S3

〈a〉 × 〈c〉

〈b〉 × 〈c〉

〈c〉



Turning (k , L)-complexes into square complexes
The girth of a graph L is the number of edges in a shortest
embedded circuit.

Examples

1. Km,n has girth 4
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2. Petersen graph has girth 5



Turning (k , L)-complexes into square complexes

A k-gon can be metrised as a Euclidean k-gon, a cycle of k
Euclidean squares, or a hyperbolic k-gon:

Theorem (Gromov)

Let X be a simply connected (k , L)-complex. Let g = girth(L). If
k ≥ 4 and g ≥ 5, or k ≥ 5 and g ≥ 4, then X can be metrised as
a square complex which is δ-hyperbolic.



Turning (k , L)-complexes into square complexes

Let X be a simply connected (k , L)-complex and g = girth(L).

Corollary

If k ≥ 4 and g ≥ 5, or k ≥ 5 and g ≥ 4, a uniform lattice
Γ < Aut(X ) is virtually special.

So Γ is linear, residually finite, has separable quasi-convex
subgroups, is virtually torsion free, large, . . .

Remarks

1. Earlier work of Wise:
I X = X (k, L) as a square complex is a VH-complex ⇐⇒ k is

even and L is bipartite
I Γ the fundamental group of a negatively curved k-gon of finite

groups, k ≥ 4

2. Uniform lattices in Aut(X ) often have torsion, unlike e.g.
fundamental groups of 3-manifolds.



Davis complexes

Fix m ≥ 2 and L a simplicial graph

Define W = W (m, L) to be the Coxeter group with

I generating set S = Vert(L)
I relations

I s2 = 1 for all s ∈ S
I (st)m = 1 ⇐⇒ s and t are adjacent in L

Remarks

1. W has presentation

W = 〈S | s2 = 1∀ s ∈ S , (st)mst = 1〉

where mst ∈ {m,∞}, mst = m ⇐⇒ s and t are adjacent in L

2. if m = 2 then W is a RACG

3. if s and t are adjacent, 〈s, t〉 ∼= D2m



Davis complexes

If m = 2 assume girth(L) ≥ 4.

The Davis complex X = X (m, L) for W = W (m, L) is the
2-complex with:

I 1-skeleton the Cayley graph of W w.r.t. S

I a 2m-gon glued along each circuit with edge labels s, t, s, t, . . .︸ ︷︷ ︸
2m

X is a (k, L)-complex with k = 2m ≥ 4.
W acts on X cocompactly with finite stabilisers.

Theorem (Gromov, Davis, Moussong)

1. If the faces of X are metrised as regular Euclidean 2m-gons
then X is CAT(0).

2. X may be metrised as a δ-hyperbolic square complex provided
if m = 2 then girth(L) ≥ 5 and if m ≥ 3 then girth(L) ≥ 4.



Lattices on Davis complexes

X = X (m, L) the Davis complex for W = W (m, L)

Theorem (Haglund–Paulin 1998, White 2012)

Aut(X ) is nondiscrete ⇐⇒ L is “flexible”

W is a uniform lattice in G = Aut(X ).

Γ1, Γ2 < G are commensurable (up to conjugacy in G ) if for some
g ∈ G , Γ1 ∩ Γg

2 have a common finite index subgroup.

Theorem (Haglund 2006)

Suppose X is δ-hyperbolic. If a uniform lattice Γ < Aut(X ) has
separable quasiconvex subgroups, then Γ is commensurable to W .

Again using Agol’s Theorem:

Corollary

All uniform lattices in Aut(X ) are commensurable.



Buildings

Examples

I Product of trees: apartments are tessellated Euclidean planes



Buildings

Examples

I Bourdon’s building: apartments are tessellated hyperbolic
planes



Buildings

Examples

I Building for SL3(F2((t))) has apartments

and links



Buildings

Examples

I There are 3-dimensional hyperbolic buildings with apartments



Right-angled buildings

Data:

1. L a simplicial graph, S = Vert(L)

2. (qs)s∈S , with qs ≥ 2

Let Γ0 be the graph product of cyclic groups of order qs over L.

There is a locally finite cube complex X , called a right-angled
building, such that Γ0 is the “standard uniform lattice” in Aut(X ).

Theorem (Gromov, Moussong, Davis)

1. X is a CAT(0) cube complex

2. X is δ-hyperbolic ⇐⇒ L has no empty squares.



Lattices on right-angled buildings

X right-angled building with data L, (qs)

Corollary

If L has no empty squares, every uniform lattice Γ < Aut(X ) is
virtually special.

Example

If Gs any finite group of order qs and Γ is the graph product of the
Gs over L, then Γ is a uniform lattice in Aut(X ). Residual
finiteness and linearity of Γ: Hsu–Wise.



Lattices on right-angled buildings

X right-angled building with data L, (qs)
Γ0 graph product of Z/qsZ over L

Theorem (Haglund 2006)

Suppose X is δ-hyperbolic. If a uniform lattice Γ < Aut(X ) has
separable quasiconvex subgroups, then Γ is commensurable to Γ0.

Corollary

If L has no empty squares, all uniform lattices in Aut(X ) are
commensurable.

Januszkiewicz–Świ ↪atkowski proved graph product Γ = Γ(Gs)
commensurable to Γ0.



Lattices in Kac–Moody groups

Let G be a complete Kac–Moody group over Fq

e.g. G = SLn(Fq((t)))

G has a building X but G is much smaller than Aut(X )

Theorem (Rémy 1999, Carbone–Garland 2003)

For q large enough, G admits a nonuniform lattice.

Both proofs start with a subgroup of G and show it is a
nonuniform lattice by considering the action on X .



Recent result
Let G be a complete Kac–Moody group over Fq

Theorem (Capdeboscq–T 2012)

Assume that the building X for G is right-angled. Then G admits
a uniform lattice Γ in the following cases:

1. q even and q ≡ 3 (mod 4)

2. q ≡ 1 (mod 4) and the building for G is Ip,q+1

Moreover Γ contains a surface subgroup.

We start with a uniform lattice Γ < Aut(X )

1. Γ = Γ0 graph product of finite cyclic groups

2. Γ a lattice in Aut(Ip,q+1) with surface quotient [Futer–T 2012]

Then use covering theory for complexes of groups, i.e. check local
injectivity, to embed Γ in G .
In both cases Γ has a surface subgroup [Kim 2012, Holt–Rees
2012, Futer–T 2012].
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