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Introduction

2007: AIM workshop “Problems in geometric group theory”

2007-2008: Benson Farb, Chris Hruska and | wrote “Problems on
automorphism groups of nonpositively curved polyhedral complexes
and their lattices”. Refereed by Haglund.

Today:
1. Locally compact groups G and their lattices
2. Polyhedral complexes X
3. Applications of Agol's Theorem to lattices in G = Aut(X)
4

. Recent result with Inna Capdeboscq on Kac—Moody lattices
with surface subgroups



Locally compact groups

G locally compact topological group with Haar measure p

Examples

1. G = (R",+) with Lebesgue measure

2. G:SLg(R):{<i Z)

a,b,c,deR,ad—bc:l}



Lattices
G locally compact, Haar measure p

A subgroup I' < G is a lattice if
» [ is discrete
» u(M\G) < oo (finite covolume)

A lattice T < G is
» uniform or cocompact if '\ G is compact

> otherwise, non-uniform or non-cocompact

Example
Let G = PSL»(C) and let ' < G be a torsion-free lattice.

» If I is uniform, I is the fundamental group of a closed
hyperbolic 3-manifold.

» If [ is non-uniform, I is the fundamental group of a finite
volume non-compact hyperbolic 3-manifold.

If I has torsion replace manifold by orbifold.



Polyhedral complexes

A polyhedral complex is a CW complex obtained by gluing
together convex polyhedra by isometries along their edges.

All polyhedra from fixed constant curvature space: S”, E" or H".
A polygonal complex is a 2-dimensional polyhedral complex.
Examples

1. Trees
2. Products of trees
3. Davis complexes
4.

Buildings



Trees

T locally finite tree

G = Aut(T) is a locally compact group
G non-discrete <= 3 {gn} C G, gy # 1, so that g, fixes Ball(n)

Example
G = Aut(T) nondiscrete for T = T,, the m-regular tree, m > 3



Lattices in Aut(T)

T locally finite tree
G = Aut(T) with Haar measure

[ < G is discrete <= [ acts with finite stabilisers

Theorem (Serre)
Can normalise i so that ¥V discrete [ < G,

1
HNG) = 2 [Siabr(w)

veT/T

and I uniform <= T /I compact.



Uniform tree lattices
I < Aut(T) is a uniform lattice
<= [ acts on T with finite quotient and finite stabilisers
<= [ is fundamental group of a finite graph of finite groups with
universal cover T.

Theorem (Bass—Kulkarni 1991)

Uniform tree lattices are virtually free.

Example

G = Aut( T3)

I = m1(graph of groups) = G * Cs is uniform lattice in G
WG =4+ =3




Non-uniform tree lattices
I < Aut(T) is a non-uniform lattice
<= [ acts on T with infinite quotient and finite stabilisers
growing ‘“fast enough”
<= [ is fundamental group of an infinite graph of finite groups
with universal cover T and the vertex groups growing “fast

enough”
Example
G = Aut( T3)
I = m1(graph of groups) is non-uniform lattice in G
wWMG)=3+3+3+5+-=3%
1 2 22 23 24




Tree lattices

Program (Bass, Lubotzky, ...)
Compare lattices in Aut(T) to lattices in Lie groups.

Motivation:
» Study lattices in Lie groups via action on symmetric space
e.g. upper half-plane is symmetric space for SLy(R)
» Study lattices in algebraic groups over nonarchimedean local
fields via action on building
e.g. Tgy1 is building for SLo(Fq((t)))



Lattices in Aut(X)

X locally finite polyhedral complex
G = Aut(X) is locally compact, has Haar measure

[ < G is discrete <= [ acts with finite stabilisers

Theorem (Serre)
Can normalise i so that ¥V discrete [ < G,

1

MG = 2 Tsmb(w)

vexX/T

and I uniform <= X/I' compact.



Cubulating uniform lattices in Aut(X)

X locally finite polyhedral complex
G = Aut(X)

[ < G is a uniform lattice <= [ acts properly discontinuously
and cocompactly on X

Let I < G be a uniform lattice.
1. By definition, if X is CAT(0) then I is a CAT(0) group.

2. By Milnor-Svarc Lemma, if X is CAT(-1) or d-hyperbolic then
I" is hyperbolic.

3. By Agol's Theorem, if X is a d-hyperbolic cube complex then
I" is virtually special.



The link condition for polygonal complexes

X polygonal complex

Metrise link Lk(v, X) so edge length = angle at v.

Gromov Link Condition:

1. If X is piecewise Euclidean and all embedded circuits in all
links have length > 27, then X is locally CAT(0).

2. If X is piecewise hyperbolic and all embedded circuits in all
links have length > 2, then X is locally CAT(-1).

Example
Product of trees is CAT(0)

P



Caution: Property (T)

Theorem (Cartwright, Mtotkowski and Steger 1994, Zuk 1996,

Ballmann and éwiatkowski 1997, Dymara and Januszkiewicz
2002)

For certain simplicial X, G = Aut(X) has Property (T).
G has (T)

= every lattice in G has (T)
=— no lattice in G can be cubulated.



Caution: products of trees

Theorem (Burger—Mozes, 2002)

Suppose X = T, x T, with p prime, and G = Aut(X). There is a
torsion-free uniform lattice I < G which is a simple group.

Corollary

There is a NPC finite square complex with no finite-sheeted covers.



(k, L)-complexes

Given k > 3 and a graph L, a (k, L)-complex is a polygonal
complex such that

1. every face is a regular k-gon

2. the link of every vertex is L



Examples of (k, L)-complexes

» Product of trees: k =4, L= Kp




Examples of (k, L)-complexes

» Bourdon’s building: kK > 5, L = K, ,




Examples of (k, L)-complexes

Theorem (Swiatkowski 1998)

Let k > 4 and L be the Petersen graph. Then there is a unique

CAT(0) (k, L)-complex X. Moreover, Aut(X) is nondiscrete and
Aut(X) acts transitively on flags in X.

A flag in a polygonal complex X is a triple (v, e, ) where vertex v
is contained in edge e is contained in face f.



Lattices on (k, L)-complexes

k > 4, L the Petersen graph
X the unique CAT(0) (k, L)-complex

Work in progress with Inna Capdeboscq and Michael Giudici:
constructing flag-transitive uniform lattices in Aut(X) as
fundamental groups of triangles of groups (Gersten—Stallings).

Example
(@ =(b)=(c)= G
<a, b> = ng
As < 55 = AUt(L)

As

(a)  (c) ’
S3
(a, b) x (c) k 2155 % (b)



Turning (k, L)-complexes into square complexes

The girth of a graph L is the number of edges in a shortest
embedded circuit.

Examples

1. Km,n has girth 4

2. Petersen graph has girth 5



Turning (k, L)-complexes into square complexes

A k-gon can be metrised as a Euclidean k-gon, a cycle of k
Euclidean squares, or a hyperbolic k-gon:

Theorem (Gromov)

Let X be a simply connected (k, L)-complex. Let g = girth(L). If
k>4 andg >5,0ork>5andg >4, then X can be metrised as
a square complex which is 6-hyperbolic.



Turning (k, L)-complexes into square complexes
Let X be a simply connected (k, L)-complex and g = girth(L).

Corollary
Ifk >4 and g >>5, ork>5 and g > 4, a uniform lattice
I < Aut(X) is virtually special.

So T is linear, residually finite, has separable quasi-convex
subgroups, is virtually torsion free, large, ...

Remarks

1. Earlier work of Wise:
» X = X(k, L) as a square complex is a VH-complex <= kis
even and L is bipartite
» [ the fundamental group of a negatively curved k-gon of finite
groups, kK > 4
2. Uniform lattices in Aut(X) often have torsion, unlike e.g.
fundamental groups of 3-manifolds.



Davis complexes
Fix m > 2 and L a simplicial graph
Define W = W(m, L) to be the Coxeter group with
> generating set S = Vert(L)

> relations

» s2=1forallse$§
» (st)" =1 <= s and t are adjacent in L

Remarks
1. W has presentation

W=(S|s>=1Vse€ S, (st)™ =1)

where mgt € {m, o0}, mss = m <= s and t are adjacent in L
2. if m=2 then W is a RACG
3. if s and t are adjacent, (s, t) = Doy,



Davis complexes

If m =2 assume girth(L) > 4.

The Davis complex X = X(m, L) for W = W(m, L) is the
2-complex with:
> 1-skeleton the Cayley graph of W w.r.t. §
> a 2m-gon glued along each circuit with edge labels s, t,s, t,...
N——

2m
X is a (k, L)-complex with k =2m > 4.
W acts on X cocompactly with finite stabilisers.

Theorem (Gromov, Davis, Moussong)
1. If the faces of X are metrised as regular Euclidean 2m-gons

then X is CAT(0).

2. X may be metrised as a d-hyperbolic square complex provided
if m = 2 then girth(L) > 5 and if m > 3 then girth(L) > 4.



Lattices on Davis complexes

X = X(m, L) the Davis complex for W = W(m, L)
Theorem (Haglund—Paulin 1998, White 2012)
Aut(X) is nondiscrete <= L is “flexible”

W is a uniform lattice in G = Aut(X).

1,2 < G are commensurable (up to conjugacy in G) if for some
g € G, T1 N T4 have a common finite index subgroup.

Theorem (Haglund 2006)

Suppose X is 6-hyperbolic. If a uniform lattice T < Aut(X) has
separable quasiconvex subgroups, then I' is commensurable to W'.

Again using Agol's Theorem:

Corollary

All uniform lattices in Aut(X) are commensurable.



Buildings
Examples

» Product of trees: apartments are tessellated Euclidean planes

AN




Buildings
Examples

» Bourdon’s building: apartments are tessellated hyperbolic
planes




Buildings
Examples

» Building for SL3(F2((t))) has apartments

YOO
VAVAVAVAVAVA
AVAVAVAVAVA

and links



Buildings
Examples

> There are 3-dimensional hyperbolic buildings with apartments




Right-angled buildings

Data:
1. L a simplicial graph, S = Vert(L)
2. (gs)ses, with gs > 2

Let [y be the graph product of cyclic groups of order gs over L.

There is a locally finite cube complex X, called a right-angled
building, such that Iy is the “standard uniform lattice” in Aut(X).
Theorem (Gromov, Moussong, Davis)

1. X is a CAT(0) cube complex
2. X is 0-hyperbolic <= L has no empty squares.



Lattices on right-angled buildings

X right-angled building with data L, (gs)

Corollary

If L has no empty squares, every uniform lattice I < Aut(X) is
virtually special.

Example

If Gs any finite group of order gs and I is the graph product of the
Gs over L, then I is a uniform lattice in Aut(X). Residual
finiteness and linearity of I': Hsu—Wise.



Lattices on right-angled buildings

X right-angled building with data L, (gs)
o graph product of Z/qsZ over L

Theorem (Haglund 2006)

Suppose X is -hyperbolic. If a uniform lattice I < Aut(X) has
separable quasiconvex subgroups, then I is commensurable to I'y.

Corollary
If L has no empty squares, all uniform lattices in Aut(X) are
commensurable.

Januszkiewicz-Swiatkowski proved graph product [ = M(Gs)
commensurable to y.



Lattices in Kac—Moody groups

Let G be a complete Kac—-Moody group over I,
e.g. G =SL,(Fq((1)))

G has a building X but G is much smaller than Aut(X)

Theorem (Rémy 1999, Carbone—Garland 2003)
For q large enough, G admits a nonuniform lattice.

Both proofs start with a subgroup of G and show it is a
nonuniform lattice by considering the action on X.



Recent result
Let G be a complete Kac—Moody group over [,

Theorem (Capdeboscq—T 2012)

Assume that the building X for G is right-angled. Then G admits
a uniform lattice I in the following cases:

1. q even and g = 3 (mod 4)
2. g =1 (mod 4) and the building for G is I q1+1

Moreover [ contains a surface subgroup.

We start with a uniform lattice ' < Aut(X)
1. I =Tg graph product of finite cyclic groups
2. T a lattice in Aut(/, g+1) with surface quotient [Futer-T 2012]

Then use covering theory for complexes of groups, i.e. check local
injectivity, to embed I in G.

In both cases I' has a surface subgroup [Kim 2012, Holt—Rees
2012, Futer-T 2012].
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