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Summary: This talk gives an overview of the development of the theory of
perfectoid spaces. Scholze describes three “phases” of study, applying them to
different topics in number theory. The first phase was giving a correspondence
between geometry in characteristic zero and characteristic p, with the goal of
proving Deligne’s weight-monodromy conjecture. The second phase was study-
ing p-adic Hodge theory, and how it varies in families. The third phase discussed
here is the realization of important special cases of “infinite-type rigid geometry”
via perfectoid spaces.

Work on perfectoid spaces got started from a suggestion of Rapoport, that
it should be possible to reduce the weight-monodromy conjecture to equal char-
acteristic after a “highly ramified base-change”.

Conjecture 1 (Weight-Monodromy Conjecture (Deligne, 1970)). If X/Qp is a
proper smooth variety, i ≥ 0, and ` 6= p, then we have étale cohomology groups
Hi(XQp

,Q`) with their natural Galois action. These groups have two natural
filtrations, the weight filtration and monodromy filtration. Deligne’s conjecture
is that these are equal.

Deligne showed that the corresponding conjecture for X/Fp((t)) is true in his
“Weil II” paper. The case over Qp is possibly the most important open problem
about étale cohomology.

One way to interpret “highly-ramified base change” is as in the following
theorem.

Theorem 2 (Fontaine-Wintenberger, 1970’s). Let K = Qp(p1/p∞
), i.e. Qp

with all p-power roots of p adjoined (an infinitely ramified extension of Qp).
Then

Gal
(
Fp((t))/Fp((t))

) ∼= Gal
(
Qp/K

)
⊆ Gal

(
Qp/Qp

)
.

So after this base-change, Galois theory over Qp is the same as over Fp((t))!
One can then ask the natural question of whether, given a variety X/K, one
can realize the GK-representation Hi(XK ,Q`) as Hi(X ′

Fp((t))
,Q`) for some
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X ′/Fp((t)), in a way such that the Galois actions are compatible via the isomor-
phism of the theorem. If so, then Deligne’s proof of the weight-monodromy con-
jecture over Fp((t)) implies the conjecture over Qp. In other words, does the re-
lation between K and Fp((t)) extend to a correspondence of higher-dimensional
objects X ↔ X ′? Studying this led to “Phase 1” of the study of perfectoid
spaces.

Phase 1 The first case of such a correspondence we’d want to understand
is how Pn

K corresponds to Pn
Fp((t)). There’s one important difference between

these two objects: the behavior of the Frobenius map ϕ : Pn → Pn given by
[x0 : . . . : xn] 7→ [xp

0 : . . . : xp
n]. In characteristic p, ϕ is a homeomorphism of

underlying topological spaces on the étale site, but not in characteristic zero!
To get the Fontaine-Wintenberger theorem, we had to adjoin all of the p-

power roots of p to Qp. We’ll have to do something similar here. So we can refine
the question of the above proposition and ask whether there is a correspondence

lim←−
ϕ

Pn
K ←→ lim←−

ϕ

Pn
Fp((t))

∼= Pn
Fp((t)).

The answer to this is yes! In a suitable setup, we have bijections between the
underlying sets of points and of étale sites,∣∣∣∣∣lim←−

ϕ

Pn
K

∣∣∣∣∣ ∼= ∣∣Pn
Fp((t))

∣∣ (
lim←−
ϕ

Pn
K

)
ét

∼=
(
Pn
Fp((t))

)
ét
.

So this gives the correspondence for projective spaces. But the weight-
monodromy conjecture for Pn is trivial, so we need some more examples. One
way we can produce these is by considering a dynamical system (X,ϕ) in char-
acteristic zero with X/K and ϕ a lift of Frobenius. In this case there will exist
X ′/Fp((t)) corresponding to lim←−ϕ

X.
Specific example of this: Let X be the canonical lift of an ordinary elliptic

curve (or an abelian variety), and ϕ the canonical lift of Frobenius. This ϕ map
has the nice property that it’s finite étale in characteristic zero.

So the diagram to keep in mind is the following. We want to compare vari-
eties over K with varieties over Fp((t)), but we can’t do that directly. Instead,
we’ll compare “perfectoid spaces” over K and “perfectoid spaces” over Fp((t)),
which are rigid-analytic objects that are actually equivalent to each other (via
the tilting equivalence). For a variety X ′ over Fp((t)), there’s a canonical way
to pass to a perfectoid space lim←−Frob

X ′. In characteristic zero, there’s a way to
pass from a pair (X,ϕ) to a perfectoid space lim←−ϕ

X.
But there’s no canonical way to pass from a variety over characteristic zero

by itself to a perfectoid space! Moreover, while we found lifts of Frobenius for
Pn
K and for elliptic curves, most varieties X don’t admit one (for instance curves

of genus ≥ 2). Way out of this: embed everything in projective space! Take
X = X0 ↪→ Pn

K , and then pull back our canonical tower for projective space

· · · Pn
K Pn

K Pn
K

ϕ ϕ
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to a tower
· · · X2 X1 X0.

Then lim←−Xi ⊆ lim←−Pn
K ↔ Pn

Fp((t)) is a perfectoid space! But it does not tilt to a
variety over Fp((t)). Example: The curve

X0 = {x0 + x1 + x2 = 0} ⊆ P2
K

pulls back to
Xn = {xpn

0 + xpn

1 + xpn

2 = 0},
which are Fermat curves of genus going to∞. Then lim←−Xn is an object that we
can think of living in P2

Fp((t)), but it’s a very badly-behaved one: for instance, it
meets lines at infinitely many points! We can think of it as a fractal correspond-
ing to the dynamical system (P2, ϕ). However, we can get around this issue in
some cases via the following lemma:

Lemma 3. If X ⊆ Pn is a complete intersection, the fractal we get can be
approximated by algebraic varieties.

By using the lemma, you can relate the cohomology of X to the cohomology
of the approximating varieties, and obtain the weight-monodromy conjecture
for complete intersections.

Phase 2 The next direction of study of perfectoid spaces was p-adic Hodge
theory. This is where studying perfectoid spaces most naturally belongs; most of
the ideas came from p-adic Hodge theory of Faltings, Kedlaya, and others. The
basic idea (due to Faltings, 1990): Cover varieties locally by perfectoid spaces.
Have X/Qp, and analyze by considering opens U ↪→ X (in the sense of rigid
analytic geometry), taking a pro-finite étale cover Ũ → U with Ũ perfectoid.

Example: For Pn, take the open set Gn
m, and take the cover G̃n

m = lim←−ϕ
Gn

m.
This idea of “extracting p-power roots” has been used in p-adic Hodge theory

for a long time. Given these covers Ũ → U of open sets, could think to tilt the
perfectoid spaces Ũ to equal characteristic, but then can’t glue them to an
algebraic variety. So we forget about tilting in this setup - perfectoid spaces
still have useful properties that help us in this setup!

What are some of these properties? First, they have very small Fp-étale
cohomology (occurs only in degrees 0 and 1 for affinoids). Can refine this and say
that perfectoid spaces are “almost contractible” via the “almost purity theorem”,
a key technical component of Faltings’ approach to p-adic Hodge theory. The
theory of perfectoid spaces actually lets you prove a more general version of the
almost purity theorem than before, and this is then the main tool used when
we apply perfectoid spaces to p-adic Hodge theory!

Remark: We can make sense of Ω1
R/F1

, i.e. “differentials over the field of one
element”, in this setup, The idea is that Z/F1 is dimension 1 and smooth, so
Ω1

Z/F1

∼= Z. So we should have an exact sequence

0→ Ω1
Z/F1
⊗R ∼= R→ Ω1

R/F1
→ Ω1

R/Z → 0.
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In particular, let R be a smooth Qp-Tate algebra.

Proposition 4 (“Faltings’ extension”). For any perfectoid R-algebra R̃, there
exists an object we can think of as “Ω1

R/F1
⊗R R̃” that’s compatible with base

change in R̃ as expected and sits in an exact sequence

0→ R̃(1)→ Ω1
R/F1

⊗R R̃→ Ω1
R̃/Qp

→ 0.

Phase 3 This phase started March 22, 2011, at a conference at Princeton. At
14:30 Scholze gave the first big talk on perfectoid spaces, and at 16:00 Jared
Weinstein gave equations for the Lubin-Tate tower at infinite level,

Zp[[X
1/p∞

1 , . . . , X1/p∞

n ]]/∆.

It was evident that what he was describing was a perfectoid space, and that
perfectoid spaces arose naturally in contexts like this!

Brief description of the Lubin-Tate tower. This is a tower

· · · → M2 →M1 →M0

whereM0 is an (n−1)-dimensional open unit ball, andMk/M0 is a GLn(Z/pkZ)-
torsor. The whole picture should be a GLn(Zp)-torsor, so people wanted to make
sense of the inverse limit. But if you do that, you lose all finiteness statements,
and there wasn’t any corresponding definition of rigid-analytic space. One way
to try to get around this is to introduce integral models, but that’s very compli-
cated and non-canonical. But what Weinstein proved was thatM∞ = lim←−Mk

exists as a perfectoid space, and in some sense this infinite-level object is simpler
than the finite-level ones!

One reason to consider these things at infinite level: the Drinfeld tower.
Start with Drinfeld’s upper half-space N0, which is Pn−1 with all Qp-rational
hyperplanes removed. There’s a tower

· · · → N2 → N1 → N0,

with an action of O×D. Faltings proved that at infinite level, this is isomorphic
to the Lubin-Tate tower! But without a good framework it was hard to even
make sense of what that meant; Fargues worked it out more carefully. But one
can take N∞ = lim←−Nk as a perfectoid space, and Scholze-Weinstein proves that
this is isomorphic toM∞.

So there are naturally examples of perfectoid spaces arising as a framework
for (very special) “infinite-type rigid geometry”. Also, again in this situation,
tilting doesn’t seem very useful.

Other examples of the same phenomenon: Shimura varieties at infinite level,
closely related to completed cohomology of Emerton. Another example is an
abelian variety A, with the multiplication-by-p map A → A; then lim←−A is
perfectoid.
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