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Summary: This talk is an overview of the subject of “almost ring theory”,
which is an important technical tool needed for working with perfectoid spaces.
The speaker gives the basic definitions of the category of almost modules over
a ring, and then builds up some commutative algebra that’s needed in the “al-
most” world. The goal is to define the appropriate “almost” version of finite
étale extensions.

Section I: Almost mathematics. The theory is due to Faltings, and a very
general version is studied in book of Gabber-Ramero). We’ll specialize to the
case we care about.

Definition 1. A perfectoid field K is a complete nonarchimedean field (with
valuation ring K◦) such that:

1. The residue characteristic is p.

2. The associated rank-1 valuation is nondiscrete.

3. The Frobenius map Φ : K◦/p→ K◦/p is surjective.

The examples to keep in mind are the following. First of all, we can take is
Cp = Q̂p, the completion of the algebraic closure of Qp. Another example is

K = Qp(1/p1/∞)∧,

where we adjoin all p-power roots of p to Qp and complete. Can also take

K =

(
lim−→
Frob

Fp((t))

)∧
.

A non-example is K = Qp, because the valuation here is discrete!
If K is a perfectoid field, let m be the maximal ideal of K◦. We can observe

that m2 = m = m⊗m. Then, if we let

Σ = {m-torsion modules} ⊆ K◦-mod,
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this is a (thick) abelian Serre subcategory, which means that it’s closed under
subobjects, quotients, and (most importantly) extensions. This is the ideal
situation for discussing localizations of categories!

Definition 2. A K◦-module is called almost zero if it’s in Σ, i.e. it’s killed by
m. We let K◦a-mod be K◦-mod/Σ, the localization of the category K◦-mod
by the Serre subcategory Σ. (This means the objects of the two categories are
the same, but we change the hom-sets so that everything in Σ is isomorphic to
0).

This category K◦a-mod where we do “almost mathematics”! For example,
K◦/m is an almost zero module, so it becomes zero in K◦a-mod. On the other
hand, K◦/p is not almost zero.

In general categorical localizations can be abstract and difficult to work with,
but our situation here lets us actually compute things. The key fact is that the
“almost” functor K◦-mod → K◦a-mod (which we denote by M 7→ Ma) has a
right adjoint N 7→ N∗ and a left adjoint N 7→ N!. This means that we have

HomK◦(M!, N) = HomK◦a(Ma, Na) = HomK◦(M,N∗).

What are these adjoint functors? They are actually very simple; if M = T a is
an almost module then

(T a)∗ = HomK◦(m, T ) (T a)! = m⊗ T.

We call M∗ the module of almost elements of M .

Remarks:
(1) The notation comes topology. If j : U ↪→ X is the inclusion of an open sub-
set, then j∗ : Sh(X)→ Sh(U) has left and right adjoints j! and j∗, respectively.
So by analogy we think of the almost functor as being restriction of sheaves to
an open subset. Recall that topologically, j! is exact. Exercise: check that N!

is exact.
(2) If N ∈ K◦a-mod, we have (N!)

a = N = (N∗)
a; so both of the adjoints are

sections of the almost functor, and both maps N 7→ N∗, N! are fully faithful.
(3) The converse of remark 2 is false: if M is a K◦-module then neither (Ma)!

nor (Ma)∗ is necessarily M . For instance (K◦a)! = m and (ma)∗ = K◦. To-
gether, (2) and (3) say that going from from the almost world to the concrete
world and back doesn’t change anything, but going from concrete to almost and
back does.
(4) The Serre subcategory Σ is an “ideal” for tensor products, i.e. if you tensor
any module by an almost zero module you get an almost zero module. This
means that K◦a-mod inherits a tensor product from K◦-mod. We can then
talk about any construction we can do in a tensor category; for instance we can
define K◦a-algebras, and then modules over algebras.
(5) The tensor category K◦a-mod has internal Hom: ifM,N are K◦a-modules,
the internal Homs are the “almost homomorphisms”

alHom(M,N) = HomK◦a(M,N)a
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with the expected functors. (The set Hom(M,N) is the homomorphisms in
K◦a-mod, and it is given a K◦-module structure via the structure of this cat-
egory; applying the almost functor gives that alHom(M,N) is an element of
K◦a-mod).

Section II: Almost commutative algebra. All of the above discussion was
essentially category; we now want to translate commutative algebra over to this
category. We start by defining flatness.

Definition 3. Let A be a K◦a-algebra and M an A-module.

1. We say M is flat if M ⊗A − is exact.

2. We say M is almost projective if alHomA(M,−) is exact.

3. IfM = Na and A = Ra, we sayM is almost finitely generated if, for every
ε ∈ m, there exists a finitely-generated R-module Nε and a morphism
fε : Nε → N such that ker f and coker f are killed by ε. (This allows
different Nε and fε’s as we vary ε)!

4. If M is almost finitely generated and the number of generators we need
for Nε is bounded independently of ε, we say it’s uniformly almost finitely
generated.

5. There is a similar notion of almost finitely presented.

We emphasize that all of the statements about exactness are computed in the
abelian category A-mod of almost modules over the almost algebra A!

Remarks:
(1) If A = Ra and M = Na, then (because the almost functor has two-sided
adjoints), M is flat iff TorRi (N,−) is almost zero for all i > 0. Similarly M is
almost projective iff ExtiR(N,−) is almost zero for all i.
(2) The reason we use the term “almost projective” is because it is not the same
as projectivity inK◦a-mod in the categorical sense! Exercise: IfM ∈ K◦a-mod
is projective, then M = 0. (Related to previous exercise about N!).

Examples:
(1) Any finitely-generated ideal I ⊆ K◦ is uniformly almost finitely generated.
(2) Fix a real number r > 0 that doesn’t arise as a value of K∗. Set

Ir = {f ∈ K◦ : val(f) > r}.

Then this is not finitely-generated (and not almost-isomorphic to a finitely-
generated module) but is almost finitely-generated.
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Section III: Diagonal idempotents. Our goal in this talk to define “almost
étale extensions”; we’ve been building up the almost commutative algebra we
need to. We now take a digression to the usual (non-almost) case of commutative
algebra to review étale maps.

If A → B is a finite étale map of commutative rings, then there’s a closed
and open embedding Spec(B) ↪→ Spec(B ⊗ B). Then there exists a unique
diagonal idempotent e ∈ B ⊗A B, which satisfies:

1. e2 = e.

2. µ(e) = 1 for µ : B ⊗A B → B the multiplication map.

3. ker(µ) · e = 0.

Actually this works more generally for unramified maps, but we just need the
étale case.

Example: If A → B is a Galois extension of fields with group G, then
B⊗AB ∼=

∏
g B with b1⊗b2 7→ (bi ·g(b2))g∈G. Then, e corresponds to the tuple

(1, 0, . . . , 0).

Key fact: If e =
∑N

i=1 xi ⊗ yi ∈ B ⊗B, then:

1. tr(e) =
∑

tr(xiyi) = deg(B/A).

2. If we take the map B 7→ A⊕N → B with the first one given by b 7→
(tr(b · xi)) and the second by (ai) 7→

∑
aiyi, the composite of these is the

identity.

We will use this key fact as an alternate formulation of “finite étale” that can
be generalized to the almost setting.

Section IV: Almost étale extensions. Let K be a perfectoid field, f : A→
B a map of K◦a-algebras.

Definition 4. We say f is unramified if there exists an almost element e ∈
(B ⊗A B)∗ such that e2 = e, µ(e) = 1, and ker(µ) · e = 0. We say f is étale if
it’s flat and unramified. We say f is finite étale if it’s étale and B is an almost
finitely presented projective A-module.

We let Afét denote the category of all finite étale A-algebras. There is a
good deformation theory here: if there is a nilpotent ideal I ⊆ A then Afét is
equivalent to (A/I)fét.

Finally, want to give one real example of an almost étale map (related to
the almost purity theorem). Fix a perfectoid field K of characteristic p. Fix
a nonzero element t ∈ m (thinking about the completion of the perfection of
Fp((t)), say). Let A be a flat K◦-algebra integrally closed in A[1/t], and B′ a
finite étale A[1/t]-algebra. Take B to be the integral closure of A in B′. This
map will not be étale. If we were in characteristic zero, the purity theorem in
algebraic geometry would control how badly this fails, and say we could get it

4



to be étale by base change. In characteristic p, our “almost purity theorem” says
that if A is perfect, then Aa → Ba is finite étale.

Proof: Let e ∈ B′⊗AB
′ be a diagonal idempotent. Then there exists N > 0

such that tNe ∈ B ⊗A B. Because A is perfect, B′ is perfect and thus B
is perfect. Can apply the inverse of Frobenius, which does nothing to e, and
then get (tN )1/pn

e ∈ B ⊗A B. Iterating this we can conclude e ∈ (B ⊗A B)∗.
This gives that the extension is unramified. For the rest, fix ε ∈ m and write
εe =

∑N
i=1 xi⊗yi. Have the maps B → A⊕N → B as before. Compute that the

composite is given by multiplication by ε. Conclude that B is uniformly almost
finitely generated projective.
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