
MSRI Hot Topics Workshop: Perfectoid Spaces and their Applications

Adic Spaces I - Eugen Hellmann
1:15pm February 17, 2014

Notes taken by Dan Collins (djcollin@math.princeton.edu)

Keywords: Affinoid algebras, Tate algebras, Valuations, Adic spaces

Summary: This lecture defined adic spaces, which we will use as the geometric
framework for perfectoid spaces. Adic spaces are one system for rigid geometry,
with the advantage for us that they do not require finiteness properties of the
rings involved. The speaker first discusses affinoid rings, and then builds up the
definition of the “adic spectrum”, a geometric space associated to them defined
in terms of their valuations.

Aim of the talk: introduce the category for adic spaces, a generalization of
rigid geometry (giving us “analytic spaces” over a nonarchimedean base field)
that’s suitable for dealing with perfectoid rings. Two features of adic spaces:

1. Can treat general affinoid rings (no finiteness conditions).

2. The structure sheaf is defined on the underlying topology of a topological
space (not on a Grothendieck topology). This reduces ambiguity in what
we’re doing - for instance open sets are determined on the level of points.

For the rest of the talk, fix a nonarchimedean base field k, i.e. k a field with
a complete topology defined by a nontrivial rank-1 valuation | · | : k → R≥0.
Examples: Qp, Fp((t)), perfectoid fields.

Definition 1. An f -adic ring is a topological ring R such that R contains an
open subring R0 (the ring of definition) such that the topology on R0 is adic
with respect to a finitely-generated ideal of definition. An f -adic ring is R is a
Tate ring if there exists a topologically nilpotent unit in R.

If R is a topological k-algebra, R is a Tate ring if the sets aR0 for a ∈ k×
form a neighborhood basis of 0 for the topology on R. Examples: the usual
Tate algebra from rigid geometry,

k〈T1, . . . , Tn〉 = k[T1, . . . , Tn]∧

(where the completion is with respect to the $-adic topology, for some $ ∈ k×
with |$| < 1) is a Tate-k-algebra.
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Definition 2. An element a ∈ R in a f -adic ring is called power-bounded if the
set {an : n ≥ 0} is a bounded subset of R. (In this situation, “boundedness”
of a subset means that every neighborhood of 0 can be scaled to contain the
subset). We let R◦ be the subring of power-bounded elements in R◦.

Definition 3. An affinoid algebra is a pair (A,A+) where A is an f -adic ring
and A+ ⊆ A◦ is an open and integrally closed subring of A◦. An affinoid algebra
(A,A+) is of finite type over k if A is topologically of finite type over k (i.e. a
quotient of a Tate algebra k〈T1, . . . , Tn〉) and A+ = A◦.

From now on we let A denote an f -adic ring or a Tate ring.

Definition 4. A valuation on A is a map v : A→ Γ ∪ {0} where Γ is a totally
ordered abelian group (which we write multiplicatively) satisfying:

• v(0) = 0 and v(1) = 1.

• v(ab) = v(a)v(b)

• v(a+ b) ≤ max{v(a), v(b)}.

Here, we extend the order on Γ to Γ ∪ {0} by letting 0 < γ for all γ ∈ Γ, and
extend multiplication by letting 0 · ga = 0.

Definition 5. Given a valuation on A as above, we let

supp(v) = {x ∈ A : v(x) = 0},

which is a prime ideal, and we let Γv be the subgroup of Γ generated by the
nonzero values {v(x) : x ∈ A, v(x) 6= 0}. We say two valuations v, v′ on A are
equivalent if, for all a, b ∈ A, we have v(a) ≤ v(b) iff v′(a) ≤ v′(b).

Two valuations v, v′ are equivalent iff supp(v) = supp(v′) and the associated
valuation rings on Frac(A/ supp(v)) are the same.

Next, we want to define a notion of continuity for valuations. This is impor-
tant because we want to, for instance, exclude the trivial valuation for Qp.

Definition 6. A valuation v is called continuous if, for all γ ∈ Γv, there exists
an open neighborhoods U of 0 in A such that v(x) < γ for all x ∈ U .

Definition 7. Let A be an f -adic ring. We define the valuation spectrum

Spv(A) = {Equivalence classes of valuations v : A→ Γv}.

We further define the continuous spectrum as the subset

Cont(A) = {Equivalence classes of continuous valuations v : A→ Γv}.

Finally, if (A,A+) is affinoid we define a further subset of this

Spa(A,A+) = {v ∈ Cont(A) : v(x) ≤ 1 ∀x ∈ A+}.
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The spaces Spa(A,A+) will be the analogues of affine sets for our definition
of adic spaces. To make sense of this we need to first put a topology on it (and
on Cont(A) and Spv(A) while we’re at it); in each case we take the basis to be
generated by the following sets for all f, g ∈ A:

Sf,g = {v : v(f) ≤ v(g) 6= 0}.

This construction and the basic theory to follow is all due to Huber.

Theorem 8. The spaces Spv(A), Cont(A), and Spa(A,A+) are all spectral
spaces (i.e. homeomorphic to the spectrum of some ring, given the Zariski topol-
ogy).

Given a ring (A,A+) and a point x = v ∈ Spa(A,A+), we want to view
f ∈ A as a function on this space and x as applying an absolute value for f . So
we take the notation |f(x)| = v(f).

If A is a Tate k-algebra, we can get a basis for the topology on Spa(A,A+)
by taking all rational subsets

U

(
f1, . . . , fn

g

)
= {x ∈ Spa(A,A+) : |fi(x)| ≤ |g(x)|}

for elements f1, . . . , fn, g ∈ A with (f1, . . . , fn) = A. These subsets are all
quasicompact (unlike the subsets in our original basis).

Example: Can compare this adic spectrum to the world of rigid spaces for the
case that A is a Tate algebra of finite type over k. If m ⊆ A is a maximal ideal,
we get a valuation (technically, an equivalence class of them) by composing the
projection A � A/m with the unique extension of the valuation on k to A/m
(which is a finite extension of k). This gives an inclusion

Sp(A) = {m ⊆ A a maximal ideal} ↪→ Spa(A,A◦).

The topology on Spa(A,A◦) recovers the Grothendieck topology on Sp(A) in
the sense that U 7→ U ∩ Sp(A) gives a bijection between quasicompact opens of
Spa(A,A◦) and quasicompact admissible opens in Sp(A). Similarly we have a
bijection between coverings by quasicompact opens of Spa(A,A◦) and coverings
by quasicompact admissible opens in Sp(A). So topologically we recover the
rigid-analytic setup from the adic setup.

Of course, we don’t just want a topological space, we want a structure
(pre)sheaf. For an affinoid ring (A,A+) we want to define a structure presheaf
on X = Spa(A,A+). We restrict to the case where A is Tate, so we can take
rational subsets as our basis elements. Then, our construction mimics the one
from classical rigid geometry: if U = U

(
f1,...,fn

g

)
is a rational open subset, we

take
OX(U) = A

〈
f1
g
, . . . ,

fn
g

〉
where A〈f1/g, . . . , fn/g〉 is the completion of A[f1/g, . . . , fn/g] ⊆ Ag with re-
spect to the topology generated by aA0[f1/g, . . . , fn/g] for a ∈ k× (where we
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choose a ring of definition A0, and the resulting topology is independent of the
choice).

We also want to have a canonical integral structure on our structure sheaf.
So we let

O+
X(U) = A

〈
f1
g
, . . . ,

fn
g

〉+

be the completion of the integral closure of A+[f1/g, . . . , fn/g] with respect to
the topology described above.

Proposition 9. The canonical map Spa(A〈fi/g〉, A〈fi, g〉+) to Spa(A,A+) in-
duced by the canonical map ϕ : (A,A+) → (A〈fi/g〉, A〈fi, g〉+) factors over
U and induces a homeomorphism onto U . Moreover, ϕ is universal for maps
(A,A+)→ (B,B+) where B is complete and such that the induced map Spa(B,B+)→
Spa(A,A+) factors over U .

Since these sets U are a basis for a topology, what we’ve defined determines
presheaves OX and O+

X . In nicer situations you’d prove that these are sheaves,
but adic spectra are not nice enough that this always holds. So we define

Definition 10. The spectrum X = Spa(A,A+) as above is called an affinoid
adic space if OX is a sheaf.

In the situation of classical rigid geometry, we can of course actually verify
that we have a sheaf.

Theorem 11. If A is strongly Noetherian (i.e. if the ring A〈T1, . . . , Tn〉 is
Noetherian for all n) then OX is a sheaf. (Note that Tate algebras of finite type
over k are strongly Noetherian).

To get general adic spaces, we glue affinoid ones. This gluing takes place in
the category V consisting of triples(

X,OX , (vx)x∈x
)

where X is a locally ringed space, OX is a sheaf of complete topological rings,
and vx is a valuation on the stalk OX,x for each x ∈ X. (Morphisms are
the obvious ones). If (A,A+) is an affinoid ring such that Spa(A,A+) is an
affinoid adic space, it determines such a triple by taking X = Spa(A,A+), OX

the structure sheaf, and letting vx be the canonical extension of the valuation
defined by x to OX,x.

Definition 12. An adic space is an object of this category V which is locally
isomorphic to an affinoid adic space.

Example: Projective line as an adic space. Start by considering the closed
unit discX = Spa(k〈T 〉, k◦〈T 〉), assuming k is complete and algebraically closed.
Get P1 by gluingX andX ′ = Spa(k〈T−1〉, k◦〈T−1〉) in the obvious way. There’s
5 types of points in X:
(1) Classical rigid points, corresponding to maximal ideals of k〈T 〉 and elements
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of k◦. (This is a rank-1 valuation).
(2),(3) Given x ∈ k◦ and a real number 0 < r ≤ 1 have a valuation vx,r given
by ∑

ai(T − x)i 7→ sup{|ai|ri} = sup{|f(y)| : y ∈ D(x, r)}.

where D(x, r) = {y ∈ k◦ : |x − y| ≤ r}. (The valuation only depends on the
disc). We say it’s type (2) if r ∈ |k×| and type (3) if not. (These are also rank
1).
(4) If D0 ⊇ D1 ⊇ D2 ⊇ · · · is a decreasing sequence of discs Di = D(xi, ri) ⊆ k◦
with ∩Di = ∅, then

f 7→ inf
i

sup
y∈Di

|f(y)|

is a valuation of type 1.
(5) Example: consider vx,1 of type (2), which is actually independent of the point
x. This has a specialization ξx,1 taking values in R>0×Z with the lexicographic
order and a chosen generator γ ∈ Z with γ < 1. Then ξx,1 is given by

∑
ai(T −

x)i 7→ sup{(|ai|, γi)}. These valuations ξx,1 depend only on {y : |x − y| < 1},
and form an A1(κ) for κ the residue field. In P1 ⊇ X there’s an additional
specialization of v(x,1) defined similarly but choosing γ > 1 (write it as ξ(∞,1)),
and these specializations form a P1(κ). For other points of type (2) with r < 1,
we get a P1(κ) in X. These are rank 2 valuations, and are closed points.

Points of type (1), (3), and (4) are closed points. Points of type (2) are not
closed but have a specialization of type (5). Also, points of types (1)-(4) are
those showing up in Berkovich spaces.

Can also see ξ(∞,1) by changing the ring k〈T 〉+. Namely, if we take X =
X ∪ {ξ(∞,1)} ⊆ P1, we have that

X = Spa(k〈T 〉, k〈T 〉+)

for k〈T 〉+ the integral closure of k◦ +$k◦〈T 〉.
What are the value groups of each of these types of valuations? Type (1)

obviously has value group |k×|. Can check type (2) also have value group |k×|,
as do type (4), because those become type (4) if we replace k by its spherical
completion. Type (3), on the other hand, are bigger than |k×|.

Remark: Define an affinoid field over k as a pair (K,K+) where K is a
complete nonarchimedean field and K+ ⊆ K◦ is an open valuation subring. If
x ∈ Spa(A,A+) is a point then we get an affinoid field (K,K+) with K = k̂(x)

and K+ = k̂(x)+ (completions of the residue field and its integral elements).
Then points of Spa(A,A+) correspond to equivalent classes of maps (A,A+)→
(K,K+), similar to how points of an affine scheme can be viewed as equivalence
classes of maps to fields. A point x is rank 1 iff this K+ is equal to all of K◦,
and if y is a specialization of x then K(x) = K(y) and K(x)+ ⊇ K(y)+. This is
one reason why we really do need to allow a choice of K+ in our affinoid fields,
and not just restrict to the case K+ = K◦ (and correspondingly for affinoid
rings).
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