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Summary: This lecture defines perfectoid algebras over a perfectoid field, and
then aims to prove the “tilting equivalence” for categories of these objects. There
are two major steps to this proof. The first is applying almost ring theory to
construct an equivalence of perfectoid K-algebras with perfectoid K◦a-algebras.
The second is using deformation theory (via the theory of the almost cotan-
gent complex) to give an equivalence of perfectoid K◦a-algebras with perfectoid
K◦a/π-algebras.

This talk will define perfectoid algebras and tilting (the affine version of
perfectoid spaces). Start with a brief reminder of how tilting works for fields.
Let K be a perfectoid field, which comes with the ring of integers K◦. We then
define

K[◦ = lim←−
ϕ

K◦/p;

this turns out to be an integral domain. We define K[ as the fraction field of
K[◦.

Theorem 1 (Fontaine-Wintenberger). K[ is perfectoid, and the categories of
finite étale algebras Kfét and K[

fét are isomorphic. (In particular this implies
the Galois groups are isomorphic).

So we had K, the subring K◦, and finally the quotient K◦/p. We also have
the tilt K[, K[◦, and K[◦/p. The key point is that K◦/p ∼= K[◦/p, and this is
what lets us “build up” the tilt. Our goal is to extend this to a tilting equivalence
between “perfectoid K-algebras” and “perfectoid K[-algebras”.

Part I: Tilting. Let K be a perfectoid field, and π 6= 0 an element of m with
|p| ≤ |π| < 1.

Definition 2. A Banach K-algebra R is perfectoid if R◦ is open and bounded,
and the Frobenius map ϕ : R◦/p → R◦/p is surjective. We define K-Perf as
the category of perfectoid K-algebras with continuous maps.
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Ultimately we want an equivalence of categories betweenK-Perf andK[-Perf .
To do this we need some intermediate objects (as in the field case above), this
time involving almost ring theory.

Definition 3. A perfectoid K◦a-algebra is a flat K◦a-algebra R which is π-
adically complete and such that ϕ gives an isomorphism R/π1/p → R/π. The
category of these objects is K◦a-Perf .

Definition 4. A perfectoid (K◦a/π)-algebra is a flat (K◦a/π)-algebra such
that ϕ induces an isomorphism R/π1/p → R. The category of these objects
is (K◦a/π)-Perf .

Examples:
(1) Take R = K〈T 1/p∞〉 in the Tate sense (i.e. take

⋃
nK

◦[T 1/pn ], complete,
and invert p). This is a perfectoid algebra over K, corresponding to the perfec-
toid affine line.
(2) There’s also an integral version of the above construction, K◦〈T 1/p∞〉a.
(3) In characteristic p, and A is a Banach algebra over K with A◦ open and
bounded, then A is perfectoid iff A is perfect.

Theorem 5 (Tilting equivalence). We have a chain of equivalences of categories

K-Perf K◦a-Perf (K◦a/π)-Perf

K[-Perf K[◦a-Perf (K[◦a/π)-Perf

(A) (C)

=

(B) (D)

This theorem, along with any other unattributed ones in this talk, are due to
Scholze. The vertical arrow in this theorem is the equality coming from the fact
that the two mod-π almost algebras are isomorphic. The remaining equivalences
come in two pairs.

Part II: K-Perf vs. K◦a-Perf . We start with a lemma:

Lemma 6. Let M be a K◦a-module and N a K◦-module. Then:

1. M is flat over K◦a iff M∗ is flat over K◦.

2. N is flat over K◦ iff Na is flat over K◦a and we have Na
∗ = {x ∈ N [1/π] :

∀ε ∈ m, εx ∈ N}.

3. If M is flat over K◦a, then M is π-adically complete iff M∗ is π-adically
complete.

Theorem 7. We an equivalence of categories K◦a-Perf → K-Perf given by
A 7→ A∗[1/π] (and in the other direction by R 7→ R◦a).

We prove this by showing that the maps in both directions make sense.
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Proposition 8. If R is in K-Perf then R◦a ∈ K◦a-Perf .

Proof. We have ϕ : R◦/π → R◦/π surjective by assumption. If x ∈ R◦ is
such that xp ∈ πR◦ then xp = πy for y ∈ R◦, and thus (x/π1/p)p = y ∈ R◦.
Thus x/π1/p ∈ R◦, so x ∈ π1/pR◦. This proves that ϕ gives an isomorphism
R/π1/p → R/π. Moreover, R◦a is clearly flat and is π-adically complete by the
lemma.

Proposition 9. If A ∈ K◦a-Perf , and we take R = A∗[1/π] with the Banach
algebra structure given by making A∗ an open and bounded subring, then A∗ =
R◦ and R ∈ K-Perf .

Proof. Start by proving ϕ : A∗/π
1/p → A∗/π is injective. This map is an almost

isomorphism so this is almost injective. So, if x ∈ A∗ is such that xp ∈ πA∗,
then for all ε ∈ m we have εx ∈ π1/pA∗. The lemma tells us that x is an almost
element of π1/pA∗, and the almost elements of this are just π1/pA∗!

Next, suppose we have x ∈ R with the property that xp ∈ A∗; we want to
prove that x ∈ A∗. We can write y = πk/px ∈ A∗ for some k ≥ 1. Taking
p-powers get yp = πkxp, and this is in πA∗ by assumption. By the previous
paragraph, get y ∈ π1/pA∗. But then this means we can write y′ = π(k−1)/px ∈
A∗, and by induction we get it down to x ∈ A∗.

We now want to check that A∗/π1/pA∗ → A∗/π is surjective. We know it’s
almost surjective, so failure of surjectivity would be a quotient of A∗/π that’s
almost zero. This would have to factor through A/m. So it’s enough to show
A∗/π

1/p → A∗/m is surjective. So fix x ∈ A∗. Almost surjectivity gives that
we can pick a y such that π1/px = yp mod πA∗. Define z = y/π1/p2 ∈ R;
then zp = yp/π1/p = x mod π1−1/pA∗. Thus we conclude zp ∈ A∗, and by the
previous paragraph get z ∈ A∗, so x has a p-th root mod m.

There’s a few more steps, but these are the most involved ones.

Part III: Review of cotangent complexes. This is a complex associated
to a map of rings A→ B, defined originally by Quillen and André. For such a
map, the cotangent complex is a complex LB/A ∈ D≤0(B-mod) (which is an
actual chain complex, but it’s sufficient to think of it in the derived category).
Some of its important properties are:

• LB/A = Ω1
B/A[0] if A→ B is smooth.

• LB/A controls the deformation theory of f .

We’ll be using the second property in a very special case. A baby case of what
we want is as follows. Let A = Fp and B a perfect Fp-algebra. Claim that the
cotangent complex is zero. This follows because ϕ : B → B is an isomorphism,
so the induced map dϕ : LB/A → LB/A is an isomorphism by functoriality, but
also dϕ = 0 because (heuristically) we’re differentiating p-powers in characteris-
tic p. Thus there’s no obstructions to and no choices involved in the deformation
theory, and we get:
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Corollary 10. There exists a unique flat Z/pnZ-algebra Wn(B) (the ring of
Witt vectors) lifting B.

Part IV: Going from K◦a-Perf to (K◦a/π)-Perf , via deformation the-
ory. Here everything is almost rings, but fortunately Gabber-Romero have
developed a lot of the theory of cotangent complexes in the almost setting.

Fact: If A → B is a map of K◦a-algebras, then there’s an almost cochain
complex LB/A ∈ D(B-mod), which has the expected properties for deformation
theory.

Lemma 11. Let A be a K◦a/π-perfectoid algebra. Then LA/(K◦a/π) = 0.

This is proved by using that the relative Frobenius is an isomorphism, which
reduces to the situation above where we had the absolute Frobenius for Fp-
algebras.

Then, the lemma gives that (K◦a/π)-Perf is equivalent to (K◦a/πn)-Perf
for any n (since the deformation theory is trivial), and taking inverse limits
gives that it’s equivalent to K◦a-Perf .

Explicitly, if A is a perfectoid (K[◦a/t)-algebra, then A[ is lim←−ϕA as a per-

fectoid K[◦a-algebra. (The inverse limit is done in the almost category; but we
can think about constructions like it explicitly by pushing everything to the real
world by using one of our functors M∗ or M!, then do constructions there, and
apply the almost functor to get back).

Part V: Tilting étale covers. We want to show we have a similar chain of
equivalences of categories of finite étale covers

Afét A◦afét (A◦a/π)fét

A[fét A[◦afét (A[◦a/t)fét

(A) (C)

=

(B) (D)

To make all of this work, need to make sure the condition of being finite
étale is preserved under each link in our equivalences of categories of perfectoid
algebra. Deformation theory tells us this is okay for (C) and (D). Equivalence
(B) comes from the characteristic-p almost purity theorem from the end of an
earlier lecture. Finally, equivalence (A) is the characteristic-0 almost purity
theorem, which will be talked about later.
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