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Summary: In this talk the speaker specializes the setup of adic spaces to con-
sidering “perfectoid affinoid algebras” and their associated adic spectra. The
most important properties of these affinoid perfectoid spaces are discussed, in
particular the tilting correspondence for spaces and the fact that the structure
presheaves are actually sheaves. Finally, perfectoid spaces are defined as adic
spaces that are locally affinoid perfectoid.

Fix a perfectoid base field K. Have ring of integers K◦ in K, which we’ll
also denote OK , and this has a maximal ideal m. From yesterday’s talks we now
that K has a tilt K[ containing OK[ = O[

K = lim←−OK/p, with a maximal ideal
m[. We fix elements 0 6= $ ∈ m and $[ ∈ m[ such that OK/$ ∼= OK[/$[.

Definition 1. An affinoid K-algebra (R,R+) is called perfectoid if R is a per-
fectoid K-algebra.

Remarks:
(1) We must have mR◦ ⊆ R+ ⊆ R◦, so R+ ↪→ R◦ is an almost isomorphic.
(2) R+ and R◦ carry a $-adic topology and are $-adically complete.

Proposition 2. There is a tilting equivalence between perfectoid K-algebras
(R,R+) and perfectoid K[-algebras (S, S+), extending the tilting correspondence
for perfectoid fields.

Explicitly, this construction can be made by letting R[ = lim←−R and R[+ =

lim←−R
+ as multiplicative monoids (where the inverse limits are along the maps

x 7→ xp). When we do this, we have R+/$ ∼= R[+/$[. Can then define addition
on these to make them algebras. One way to do this is as in Bhatt’s talk
yesterday, where we defined R[◦ = lim←−ϕ

R◦/$ as an algebra; there’s a natural
map lim←−R

◦ → lim←−R
◦/$, and it turns out to be a multiplication-preserving

continuous isomorphism. Also, writing R[ as lim←−R means we have a natural
map R[ → R given by projection to the first factor; we denote this by f 7→ f ].

Now that we have perfectoid affinoid algebras, we can take their adic spectra
as in Hellmann’s talk.
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Proposition 3. There exists a continuous map Spa(R,R+) → Spa(R[, R[+)
denoted by x 7→ x[, such that for all f ∈ R[ we have |f(x[)| = |f ](x)|.

This requires checking a few things (e.g. that defining x[ by the formula
actually gives a valuation); the only one that isn’t straightforward is showing
the strong triangle inequality for x[. To prove this, fix f, g ∈ R[. Rescaling by
an element of K lets us assume without loss of generality that f, g are both in
R[+ but not both in $R[+. Then, we have f ] mod $ = f mod $[ under the
identification R+/$ ∼= R[+/$[, so we can conclude f ]+g] ≡ (f+g)] (mod $).
So

|(f + g)(x])|1/p
n

= |(f1/pn

+ g1/pn

)](x)| ≤ max{|$|, |((f ])1/p
n

+ (g])1/p
n

)(x)|}

≤ max{|$|, |f ](x)|1/p
n

, |g](x)|1/p
n

} = max{|f ](x)|, |g](x)|}1/p
n

for sufficiently large n.

Theorem 4. Let (R,R+) be a perfectoid affinoid K-algebra with tilt (R[, R[+).

1. The map X = Spa(R,R+) → Spa(R[, R[+) = X[ just defined is a home-
omorphism preserving rational subsets.

2. The natural structure presheaves OX , O+
X , OX[ , O+

X[ are all sheaves.

3. If U is a rational subset of X, then (OX(U),O+
X(U)) is a perfectoid affi-

noid K-algebra with tilt (OX[
(U),OX+

[
(U)).

4. For all x ∈ X, the completed residue field k̂(x) is a perfectoid field with
tilt k̂(x[).

Recall from Hellmann’s talk that Huber showed that if R was strongly
Noetherian, then the structure presheaf on Spa(R,R+) was a sheaf. Here, we
have no finiteness assumptions - instead we have the perfectoid condition, which
is really a certain type of “bigness” assumption!

To prove part (1) of the theorem, we need an approximation lemma that if
f ∈ R, there exists a g ∈ R[ such that f − g] is small in some sense; this will be
discussed later in Caraiani’s talk. For now, we talk about proving part (2), that
the structure sheaves are sheaves. First we will show that if the characteristic
of K is p, then OX is a sheaf. We start by making the following definition in
this setting:

Definition 5. We say a perfectoid affinoid (R,R+) is p-finite if there exists a
Tate-K-algebra (S, S+) topologically of finite type such that R+ is the $-adic
completion of lim←−S

+ and R = R+[1/$].

Proposition 6. In this situation, there is a homeomorphism preserving rational
subsets

X = Spa(R,R+) ∼= Spa(S, S+) = Y.

Moreover, for any rational subset U ⊆ X, the pair (OX(U),O+
X(U)) is p-finite

and is the perfection of (OY (U),O+
Y (U)).
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This is straightforward to prove, and as a consequence we get the sheaf
property for p-finite perfectoid affinoids.

Corollary 7. Let X be as above and have a finite cover by rational subsets
Ui ⊆ X. Then the complex

0→ R+ →
∏
i

O+
X(Ui)→

∏
i,j

O+
X(Ui ∩ Uj)→ · · ·

is almost exact.

Proof. We know that the complex

0→ S →
∏
i

OY (Ui)→
∏
i,j

OY (Ui ∩ Uj)→ · · ·

is exact by Tate’s theorem. We can then apply Banach’s open mapping theorem
can conclude that all cohomology groups of the complex

0→ S+ →
∏
i

O+
Y (Ui)→

∏
i,j

O+
Y (Ui ∩ Uj)→ · · ·

are killed by a power of $. Now we pass to the perfection by taking the di-
rect limit over Frobenius, and conclude all cohomology groups are killed by all
$1/pn

’s and thus are almost zero. Completing gives the result.

We can extend this to the general case (still where K is characteristic p) via
the following proposition.

Proposition 8. Any perfectoid affinoid K-algebra (R,R+) is a completed fil-
tered direct limit of p-finite ones.

We note that a filtered direct limit of almost exact sequences is almost exact.

Corollary 9. The structure presheaves of affinoid perfectoid spaces in charac-
teristic p are actually sheaves.

From this we can prove the almost purity theorem. Let R be a perfectoid
affinoid K-algebra. From Bhatt’s talk, we had equivalences of categories

Rfét R◦afét (R◦a/π)fét

R[
fét R[◦a

fét (R[◦a/t)fét

=

Want to complete the chain by showing Rfét
∼= R◦afét. We have an inclusion

R◦afét ↪→ Rfét, which we can check is fully faithful. Composing with the chain of
equivalences of categories, get a functor R[

fét ↪→ Rfét, inverse to tilting.
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Theorem 10 (Almost Purity). The functor R[
fét ↪→ Rfét is an equivalence of

categories. In other words, for any finite étale R-algebra S, we have that S is
perfectoid and S◦a/R◦a is finite étale.

This was proven under some hypotheses by Faltings, trying to follow the
proof of the Zariski-Nagata purity theorem, using a careful analysis of the inte-
gral structure. However, we can prove it in a different way.

Proof. Set up by pickingR+ = R◦, takingX = Spa(R,R+) andX[ = Spa(R[, R[+).
Take any such S, and sheafify: for U ⊆ X rational take S(U) = S ⊗R OX(U),
and this gives a finite étale OX(U)-algebra.

Lemma: Fix x ∈ X. Then we have

2- lim−→
x∈U
OX(U)fét

∼= k̂(x)fét.

Proof of lemma:

2- lim−→
x∈U
OX(U)fét

∼=
(
lim−→OX(U)

)
fét

= (OX,x)fét.

But lim−→O
+
X(U) is Henselian along $, so we get

(OX,x)fét
∼=
(
(O+

X,x)
∧[1/$]

)
fét
.

Finally, we identify what this last category is. We have an exact sequence

0→ I → O+
X,x → k(x)+ → 0

with I a K-vector space. If f ∈ I then |f | ≤ |$| on an open neighborhood of
x, so f/$ is in the kernel of O+

X,x → k(x)+, which is I. So $-adic completion
of O+

X,x is equal to the completion of k(x)+, which gives the equivalence in the
statement of the lemma.

Corollary: Since we know that tilting preserves residue fields,

2- lim−→
x∈U
OX(U)fét

∼= k̂(x)fét
∼= k̂(x[)fét

∼= 2- lim−→
x∈U
OX[(U)fét.

So, locally S(U) is in the image of the functor OX[(U)fét → OX(U)fét. Gluing
gives the proof of the theorem we were after.

Finally, we define what a perfectoid space is in general.

Definition 11. A perfectoid space over K is an adic space over K that’s locally
isomorphic to Spa(R,R+) for (R,R+) a perfectoid affinoid K-algebra.

Corollary 12. The category of perfectoid spaces over K is equivalent to the
category of perfectoid spaces over K[ via a tilting equivalence X 7→ X[. This
equivalence is such that |X| = |X[| and OX tilts to OX[ when evaluated on an
affinoid perfectoid U ⊆ X.
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