MSRI Hot Topics Workshop: Perfectoid Spaces and their Applications

Introduction to *p*-adic Comparison Theorems -Jean-Marc Fontaine 10:30am February 18, 2014

Notes taken by Dan Collins (djcollin@math.princeton.edu)

Keywords: Perfectoid rings, Spectral rings, Tilting, Period rings

Summary: The speaker discusses adic spaces and perfectoid spaces from another perspective that emphasizes the relationship with *p*-adic Hodge theory, and in particular the construction of period rings. We define two important classes of topological rings, "spectral rings" and "perfectoid rings". We then give a general construction of relative period rings that works in a relative setting.

Throughout the lecture, we fix a prime number p.

The key object we'll work with is the ring of Witt vectors W(R) of an algebra R over \mathbb{F}_p . We'll start by describing a way to define this by "stupid multiplicative deformation theory". Our setup will be letting Λ be a ring and R a Λ -algebra. For n > 0, a Λ -infinitesimal lifting of order $\leq n - 1$ is a pair (A, I) with A a Λ -algebra, I an ideal, $A/I \cong R$, $I^n = 0$. These form a category.

Now, consider triples (A, I, σ) where (A, I) is an infinitesimal thickening of order $\leq n-1$ and $\sigma : R \to A$ a multiplicative section. This also gives a category, and that there's an initial object in this category: take $\Lambda[R^{\times}]$ where here we let R^{\times} be the multiplicative monoid of R. Define $\varepsilon : \Lambda[R^{\times}] \to R$ by $\sum \lambda_x[x] \mapsto \sum \lambda_x x$. The initial object is then $\Lambda[R^{\times}]/(\ker \varepsilon)^n$ which we denote $U_{n,\Lambda}(R)$.

We can then recover the Witt vectors from this setup as $W_n(R) = U_{n,\mathbb{Z}}(R) = U_{n,\mathbb{Z}_p}(R)$.

Next, we revisit the tilting correspondence discussed in the previous lectures. We start with some definitions. A *Banach ring* A is a topological ring containing a *pseudo-uniformizer* π (an invertible element that's topologically nilpotent) and an open subring $A_0 \ni \pi$ such that $A = A_0[1/\pi]$ and the natural map $A_0 \rightarrow \underline{\lim} A_0/\pi^n A_0$ is an isomorphism.

A spectral ring is a Banach ring A such that A° is bounded. (Recall that A° is the set of elements $a \in A$ that are "bounded", i.e. such that $\{a^n : n \in \mathbb{N}\}$ sits inside some $\pi^{-n}A_0$). If A is a Banach ring, A is a spectral ring iff there exists a power-multiplicative norm defining the topology. (Norms in general have to satisfy $|ab| \leq |a| \cdot |b|$ and |1| = 1; "power-multiplicative" means we require

 $|a^n| = |a|^n$). If A has a power-multiplicative norm then $A^\circ = \{a : |a| \le 1\}$ is bounded; to prove the converse, you choose a pseudo-uniformizer π and a real number $0 < \rho < 1$, and define the norm $|a| = \rho^{v_{\pi}(a)}$ for

$$v_{\pi}(a) = \sup\{r/s : r, s \in \mathbb{Z} \text{ such that } a^s/\pi^r \in A^\circ\}.$$

Now, we can define a *perfectoid ring* as a spectral ring A such that there's a pseudo-uniformizer π with $p \in \pi^p A^\circ$ and with the Frobenius map $A^\circ/\pi^p A^\circ$ surjective. We can check that a perfectoid field (by our prior definition) is exactly a perfectoid ring which is a field and has a multiplicative norm.

If A is a spectral ring of characteristic p, then A is perfected iff it's perfect. If we take π to be a pseudo-uniformizer, we can form a Laurent series field $\mathbb{F}_p((\pi))$ in A, and if we take the radical and complete that gives a perfected field inside of A. So a perfected ring of positive characteristic always contains an embedded perfected field! On the other hand, if A has characteristic zero we can check that A is a Banach p-adic algebra, but we don't have a way to build a perfected field inside of it.

We now move on to tilting. If A is a perfectoid ring of characteristic zero, we want to define the *tilt* A^{\flat} . There's two ways we can approach defining this. One way is to pass to A°/π , define $A^{\flat \circ}$ as a ring as the inverse limit along Frobenius $\lim_{\alpha \to \infty} A^{\circ}/\pi$, and take $A^{\flat} = A^{\flat \circ}[1/\varpi]$. A second way (which shows up a lot in classical *p*-adic Hodge theory) is to define A^{\flat} directly as

$$A^{\flat} = \varprojlim_{x \mapsto x^p} A,$$

which gives us a multiplication operation but not addition. We define addition as follows; if $(x^{(n)})$ is an element of A^{\flat} (so by definition it's a sequence with $x^{(n)} \in A$ and $(x^{(n+1)})^p = x^{(n)}$), we define x + y by

$$(x+y)^{(n)} = \lim_{m \to \infty} (x^{(n+m)} + y^{(n+m)})^{p^m}.$$

Can check this makes sense, and is compatible with our other definition.

Now, take $R = A^{\flat}$. We have a surjective map $\theta_A : W(R^{\circ}) \to A^{\circ}$ defined by

$$\theta_A\left(\sum_{i=0}^{\infty} p^i[a_i]\right) = \sum_{i=0}^{\infty} p^i a_i^{(0)} = \sum_{i=0}^{\infty} p^i a_i^{\sharp}.$$

Then ker θ_A is a primitive ideal of degree 1: i.e. it is a principal ideal that can be generated by $[\varpi] + p\eta$, where ϖ is the pseudo-uniformizer of R, $[\varpi]$ is its Teichmüller lift, and $\eta \in W(R^\circ)^{\times}$ is a unit.

So we get a functor from the category of perfectoid rings of characteristic zero to the category of perfectoid pairs (R, I) with R a perfectoid ring of characteristic p and I is a primitive ideal of degree 1 in $W(R^{\circ})$. This functor is an equivalence of categories. To get the functor in the other way, you associate (R, I) to $A^{\circ} = W(R^{\circ})/I$ and $A = A^{\circ}[1/p]$.

If you start with a perfectoid field K of characteristic zero, we know K^{\flat} is a perfectoid field of characteristic p. If R = F is a perfectoid field of characteristic p and I is any primitive ideal of degree 1 of $W(F^{\circ})$, then our functor gives $(R, I)^{\sharp}$ a perfectoid field of characteristic zero, with tilt F. So we see that we can recover every perfectoid field of characteristic zero as an "untilt" $(R, I)^{\sharp}$.

Fontaine-Wintenberger theorem: Take K_0 a finite extension of \mathbb{Q}_p , L an algebraic extension of K_0 which is infinitely ramified and such that the Galois group of the Galois closure is a *p*-adic Lie group. Then the norm field is isomorphic to $k_L((t))$, and this proves the isomorphism of Galois groups. If you take K to be the completion of L, then K is a perfectoid field and K^{\flat} is the completion of the radical of $k_L((t))$.

If K is a fixed perfectoid field of characteristic zero, have $\theta_K : W(K^{\flat \circ}) \to K^{\circ}$ and ker $\mathcal{O}_K = (\xi)$, and then if A is a perfectoid k-algebra it corresponds to $(A^{\flat}, (\xi))$ which recovers the equivalence of categories of perfectoid algebras over K and over K^{\flat} .

Now, let k be a perfect field of characteristic zero, E an ultrametric field whose residue field is k. Then define

$$W_{E^{\circ}}(R) = E^{\circ} \widehat{\otimes}_{W(k)} W(R) = \lim_{k \to \infty} (E^{\circ} / \pi^n) \otimes_{W(k)} W(R).$$

There's a map $R \to W_{E^{\circ}}(R)$ by $x \mapsto 1\widehat{\otimes}[x] = [x]$, which is a multiplicative section of $W_{E^{\circ}}(R) \to R$. (If *E* has characteristic *p* then the Teichmüller lift is just [x] = x and $R \subseteq W_{E^{\circ}}(R) = E_{\circ}\widehat{\otimes}_{k}R$).

If R is a perfectoid k-algebra (where k is just a subfield of R° with the discrete topology), can consider the ring $W_{E^{\circ}}(R^{\circ})$. Then if we choose pseudo-uniformizers π of E and ϖ of R. We then define the ring

$$B_E^b(R) = W_{E^\circ}(R) \left[\frac{1}{\pi}, \frac{1}{[\varpi]}\right].$$

If E° is a DVR, we can choose π a uniformizer, and can check that $B^b_E(R)$ is the set of elements

$$\sum_{i\gg-\infty} [a_i]\pi^i$$

with $a_i \in R$ and the set $\{a_i\}$ bounded. In general, if $(a_n)_{n \in \mathbb{N}}$ is a sequence in Rand $(\nu_n)_{n \in \mathbb{N}}$ with $\nu_n \in E$ and $\nu_n \to 0$, can form an element $\sum [a_n]\nu_n \in B^b_E(R)$. Can form any element of $B^b_E(R)$ this way, but the expression is not unique.

If we choose an absolute value on E and a power multiplicative norm on R, this defines a power multiplicative norm on $B_E^b(R)$. Individually, all of the norms on E are equivalent and all of the norms on R are equivalent, but the induced norms on $B_E^b(R)$ aren't necessarily equivalent if we vary both of the norms. So what we do is fix a power-multiplicative norm $|\cdot|$ on R.

Proposition 1. For all $\rho \in \mathbb{R}$, there exists a unique power multiplicative norm $|\cdot|_{\rho}$ on $B_E^b(R)$ such that if $a \in R$ then $|[a]|_{\rho} = |a|$ and such that $|\pi|_{\rho} = \rho$.

Now, choose a nonempty interval $I = [\rho_1, \rho_2]$ with $0 < \rho_1 \le \rho_2 < 1$. Define

$$|\alpha|_{I} = \max\{|\alpha|_{\rho_{1}}, |\alpha|_{\rho_{2}}\} = \sup\{|\alpha|_{\rho} : \rho \in I\}.$$

This gives yet another a power-multiplicative norm, so we can complete with respect to it and get a spectral *E*-algebra $B_{E,I}(R)$. Then, if *E* is a perfectoid field, one can show that $B_{E,I}(R)$ is a perfectoid *E*-algebra. Moreover, the tilt $B_{E,I}(R)^{\flat}$ is $B_{E^{\flat},I}(R)$.

Finally, can use this setup to define B_{dR} and B_{crys} in the general context. Let A be a perfectoid \mathbb{Q}_p -algebra. Define

$$B^+_{\mathrm{dR}}(A) = \lim B_n(A)$$

for $B_n(A)$ is the infinitesimal thickening of degree $\leq n-1$ of A in the category of \mathbb{Q}_p -Banach algebras. If you want a nice proof of existence, you take θ : $W(A^{\flat \circ}) \twoheadrightarrow A^{\circ}$, invert p to get $\theta : W(A^{\flat \circ})[1/p] \twoheadrightarrow A$, show the kernel is (ξ) , and $B_n(A) = W(A^{\flat \circ})[1/p]/(\xi^n)$. To get $B_{\mathrm{dR}}(A)$ take $B^+_{\mathrm{dR}}(A)[1/\xi]$.

$$\begin{split} B_n(A) &= W(A^{\flat \circ})[1/p]/(\xi^n). \text{ To get } B_{\mathrm{dR}}(A) \text{ take } B^+_{\mathrm{dR}}(A)[1/\xi]. \\ \text{How about } B_{\mathrm{crys}}? \text{ Define } A^f_{\mathrm{crys}}(A) \text{ as the sub-}W(R^\circ)\text{-algebra of } W(R^\circ)[1/p] \\ \text{generated by the } \xi^m/m!. \text{ Then } A_{\mathrm{crys}}(A) \text{ is the completion, } B^+_{\mathrm{crys}}(A) = A_{\mathrm{crys}}(A)[1/p], \\ \text{and then can get } B_{\mathrm{crys}}(A). \end{split}$$