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Summary: The speaker discusses adic spaces and perfectoid spaces from an-
other perspective that emphasizes the relationship with p-adic Hodge theory,
and in particular the construction of period rings. We define two important
classes of topological rings, “spectral rings” and “perfectoid rings”. We then give
a general construction of relative period rings that works in a relative setting.

Throughout the lecture, we fix a prime number p.

The key object we’ll work with is the ring of Witt vectorsW (R) of an algebra
R over Fp. We’ll start by describing a way to define this by “stupid multiplicative
deformation theory”. Our setup will be letting Λ be a ring and R a Λ-algebra.
For n > 0, a Λ-infinitesimal lifting of order ≤ n − 1 is a pair (A, I) with A a
Λ-algebra, I an ideal, A/I ∼= R, In = 0. These form a category.

Now, consider triples (A, I, σ) where (A, I) is an infinitesimal thickening
of order ≤ n − 1 and σ : R → A a multiplicative section. This also gives a
category, and that there’s an initial object in this category: take Λ[R×] where
here we let R× be the multiplicative monoid of R. Define ε : Λ[R×] → R by∑
λx[x] 7→

∑
λxx. The initial object is then Λ[R×]/(ker ε)n which we denote

Un,Λ(R).
We can then recover the Witt vectors from this setup asWn(R) = Un,Z(R) =

Un,Zp(R).

Next, we revisit the tilting correspondence discussed in the previous lectures.
We start with some definitions. A Banach ring A is a topological ring containing
a pseudo-uniformizer π (an invertible element that’s topologically nilpotent)
and an open subring A0 3 π such that A = A0[1/π] and the natural map
A0 → lim←−A0/π

nA0 is an isomorphism.
A spectral ring is a Banach ring A such that A◦ is bounded. (Recall that A◦

is the set of elements a ∈ A that are “bounded”, i.e. such that {an : n ∈ N} sits
inside some π−nA0). If A is a Banach ring, A is a spectral ring iff there exists
a power-multiplicative norm defining the topology. (Norms in general have to
satisfy |ab| ≤ |a| · |b| and |1| = 1; “power-multiplicative” means we require
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|an| = |a|n). If A has a power-multiplicative norm then A◦ = {a : |a| ≤ 1} is
bounded; to prove the converse, you choose a pseudo-uniformizer π and a real
number 0 < ρ < 1, and define the norm |a| = ρvπ(a) for

vπ(a) = sup{r/s : r, s ∈ Z such that as/πr ∈ A◦}.

Now, we can define a perfectoid ring as a spectral ring A such that there’s
a pseudo-uniformizer π with p ∈ πpA◦ and with the Frobenius map A◦/πpA◦

surjective. We can check that a perfectoid field (by our prior definition) is
exactly a perfectoid ring which is a field and has a multiplicative norm.

If A is a spectral ring of characteristic p, then A is perfectoid iff it’s perfect.
If we take π to be a pseudo-uniformizer, we can form a Laurent series field
Fp((π)) in A, and if we take the radical and complete that gives a perfectoid
field inside of A. So a perfectoid ring of positive characteristic always contains
an embedded perfectoid field! On the other hand, if A has characteristic zero
we can check that A is a Banach p-adic algebra, but we don’t have a way to
build a perfectoid field inside of it.

We now move on to tilting. If A is a perfectoid ring of characteristic zero, we
want to define the tilt A[. There’s two ways we can approach defining this. One
way is to pass to A◦/π, define A[◦ as a ring as the inverse limit along Frobenius
lim←−A

◦/π, and take A[ = A[◦[1/$]. A second way (which shows up a lot in
classical p-adic Hodge theory) is to define A[ directly as

A[ = lim←−
x 7→xp

A,

which gives us a multiplication operation but not addition. We define addition
as follows; if (x(n)) is an element of A[ (so by definition it’s a sequence with
x(n) ∈ A and (x(n+1))p = x(n)), we define x+ y by

(x+ y)(n) = lim
m→∞

(x(n+m) + y(n+m))p
m

.

Can check this makes sense, and is compatible with our other definition.
Now, take R = A[. We have a surjective map θA : W (R◦)→ A◦ defined by

θA

( ∞∑
i=0

pi[ai]

)
=

∞∑
i=0

pia
(0)
i =

∞∑
i=0

pia]i .

Then ker θA is a primitive ideal of degree 1: i.e. it is a principal ideal that can
be generated by [$] + pη, where $ is the pseudo-uniformizer of R, [$] is its
Teichmüller lift, and η ∈W (R◦)× is a unit.

So we get a functor from the category of perfectoid rings of characteristic
zero to the category of perfectoid pairs (R, I) with R a perfectoid ring of char-
acteristic p and I is a primitive ideal of degree 1 in W (R◦). This functor is an
equivalence of categories. To get the functor in the other way, you associate
(R, I) to A◦ = W (R◦)/I and A = A◦[1/p].
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If you start with a perfectoid field K of characteristic zero, we know K[ is a
perfectoid field of characteristic p. If R = F is a perfectoid field of characteristic
p and I is any primitive ideal of degree 1 ofW (F ◦), then our functor gives (R, I)]

a perfectoid field of characteristic zero, with tilt F . So we see that we can recover
every perfectoid field of characteristic zero as an “untilt” (R, I)].

Fontaine-Wintenberger theorem: Take K0 a finite extension of Qp, L an
algebraic extension of K0 which is infinitely ramified and such that the Galois
group of the Galois closure is a p-adic Lie group. Then the norm field is iso-
morphic to kL((t)), and this proves the isomorphism of Galois groups. If you
take K to be the completion of L, then K is a perfectoid field and K[ is the
completion of the radical of kL((t)).

IfK is a fixed perfectoid field of characteristic zero, have θK : W (K[◦)→ K◦

and kerOK = (ξ), and then if A is a perfectoid k-algebra it corresponds to
(A[, (ξ)) which recovers the equivalence of categories of perfectoid algebras over
K and over K[.

Now, let k be a perfect field of characteristic zero, E an ultrametric field
whose residue field is k. Then define

WE◦(R) = E◦⊗̂W (k)W (R) = lim←−(E◦/πn)⊗W (k) W (R).

There’s a map R → WE◦(R) by x 7→ 1⊗̂[x] = [x], which is a multiplicative
section of WE◦(R) → R. (If E has characteristic p then the Teichmüller lift is
just [x] = x and R ⊆WE◦(R) = E◦⊗̂kR).

If R is a perfectoid k-algebra (where k is just a subfield of R◦ with the
discrete topology), can consider the ring WE◦(R◦). Then if we choose pseudo-
uniformizers π of E and $ of R. We then define the ring

BbE(R) = WE◦(R)

[
1

π
,

1

[$]

]
.

If E◦ is a DVR, we can choose π a uniformizer, and can check that BbE(R)
is the set of elements ∑

i�−∞
[ai]π

i

with ai ∈ R and the set {ai} bounded. In general, if (an)n∈N is a sequence in R
and (νn)n∈N with νn ∈ E and νn → 0, can form an element

∑
[an]νn ∈ BbE(R).

Can form any element of BbE(R) this way, but the expression is not unique.
If we choose an absolute value on E and a power multiplicative norm on

R, this defines a power multiplicative norm on BbE(R). Individually, all of the
norms on E are equivalent and all of the norms on R are equivalent, but the
induced norms on BbE(R) aren’t necessarily equivalent if we vary both of the
norms. So what we do is fix a power-multiplicative norm | · | on R.

Proposition 1. For all ρ ∈ R, there exists a unique power multiplicative norm
| · |ρ on BbE(R) such that if a ∈ R then |[a]|ρ = |a| and such that |π|ρ = ρ.
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Now, choose a nonempty interval I = [ρ1, ρ2] with 0 < ρ1 ≤ ρ2 < 1. Define

|α|I = max{|α|ρ1 , |α|ρ2} = sup{|α|ρ : ρ ∈ I}.

This gives yet another a power-multiplicative norm, so we can complete with
respect to it and get a spectral E-algebra BE,I(R). Then, if E is a perfectoid
field, one can show that BE,I(R) is a perfectoid E-algebra. Moreover, the tilt
BE,I(R)[ is BE[,I(R).

Finally, can use this setup to define BdR and Bcrys in the general context.
Let A be a perfectoid Qp-algebra. Define

B+
dR(A) = lim←−Bn(A)

for Bn(A) is the infinitesimal thickening of degree ≤ n− 1 of A in the category
of Qp-Banach algebras. If you want a nice proof of existence, you take θ :
W (A[◦) � A◦, invert p to get θ : W (A[◦)[1/p] � A, show the kernel is (ξ), and
Bn(A) = W (A[◦)[1/p]/(ξn). To get BdR(A) take B+

dR(A)[1/ξ].
How about Bcrys? Define Afcrys(A) as the sub-W (R◦)-algebra ofW (R◦)[1/p]

generated by the ξm/m!. ThenAcrys(A) is the completion, B+
crys(A) = Acrys(A)[1/p],

and then can get Bcrys(A).
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