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Summary: The speaker discusses adic spaces and perfectoid spaces from an-
other perspective that emphasizes the relationship with p-adic Hodge theory,
and in particular the construction of period rings. We define two important
classes of topological rings, “spectral rings” and “perfectoid rings”. We then give
a general construction of relative period rings that works in a relative setting.

Throughout the lecture, we fix a prime number p.

The key object we’ll work with is the ring of Witt vectors W (R) of an algebra
R over IF,. We'll start by describing a way to define this by “stupid multiplicative
deformation theory”. Our setup will be letting A be a ring and R a A-algebra.
For n > 0, a A-infinitesimal lifting of order < n — 1 is a pair (A,I) with A a
A-algebra, I an ideal, A/I =2 R, I"™ = 0. These form a category.

Now, cousider triples (A,I,0) where (A,I) is an infinitesimal thickening
of order < n —1and ¢ : R — A a multiplicative section. This also gives a
category, and that there’s an initial object in this category: take A[R*] where
here we let R* be the multiplicative monoid of R. Define € : A|[R*] — R by
> Az[z] = > Azz. The initial object is then A[R*]/(kere)™ which we denote
Una(R).

We can then recover the Witt vectors from this setup as W,,(R) = Uy, z(R) =
Unz,(R).

Next, we revisit the tilting correspondence discussed in the previous lectures.
We start with some definitions. A Banach ring A is a topological ring containing
a pseudo-uniformizer m (an invertible element that’s topologically nilpotent)
and an open subring Ay > 7 such that A = Ay[l/n] and the natural map
Ay — @AO/W”AO is an isomorphism.

A spectral ring is a Banach ring A such that A° is bounded. (Recall that A°
is the set of elements a € A that are “bounded”, i.e. such that {a™ : n € N} sits
inside some m~"Ap). If A is a Banach ring, A is a spectral ring iff there exists
a power-multiplicative norm defining the topology. (Norms in general have to
satisfy |ab] < |a| - |b] and |1| = 1; “power-multiplicative” means we require



|a™| = |a|™). If A has a power-multiplicative norm then A° = {a : |a| < 1} is
bounded; to prove the converse, you choose a pseudo-uniformizer = and a real
number 0 < p < 1, and define the norm |a| = p¥~() for

vr(a) =sup{r/s:r,s € Z such that a®/n" € A°}.

Now, we can define a perfectoid ring as a spectral ring A such that there’s
a pseudo-uniformizer 7 with p € 7?7 A° and with the Frobenius map A°/7PA°
surjective. We can check that a perfectoid field (by our prior definition) is
exactly a perfectoid ring which is a field and has a multiplicative norm.

If A is a spectral ring of characteristic p, then A is perfectoid iff it’s perfect.
If we take ™ to be a pseudo-uniformizer, we can form a Laurent series field
F,((7)) in A, and if we take the radical and complete that gives a perfectoid
field inside of A. So a perfectoid ring of positive characteristic always contains
an embedded perfectoid field! On the other hand, if A has characteristic zero
we can check that A is a Banach p-adic algebra, but we don’t have a way to
build a perfectoid field inside of it.

We now move on to tilting. If A is a perfectoid ring of characteristic zero, we
want to define the tilt A>. There’s two ways we can approach defining this. One
way is to pass to A° /7, define A°° as a ring as the inverse limit along Frobenius
@Ao/w, and take A° = A*°[1/w]. A second way (which shows up a lot in

classical p-adic Hodge theory) is to define A” directly as

which gives us a multiplication operation but not addition. We define addition
as follows; if (z(™) is an element of A” (so by definition it’s a sequence with
™ € A and (z(®tD)P = 2("), we define = + y by

(z + y)(n) = lim (x(n+m) + y(n+m))pm.
m—00
Can check this makes sense, and is compatible with our other definition.
Now, take R = A”. We have a surjective map 64 : W(R°) — A° defined by

=0 =0 =0

Then ker 6 4 is a primitive ideal of degree 1: i.e. it is a principal ideal that can
be generated by [w] + pn, where w is the pseudo-uniformizer of R, [w] is its
Teichmiiller lift, and n € W(R°)* is a unit.

So we get a functor from the category of perfectoid rings of characteristic
zero to the category of perfectoid pairs (R, ) with R a perfectoid ring of char-
acteristic p and I is a primitive ideal of degree 1 in W(R®). This functor is an
equivalence of categories. To get the functor in the other way, you associate
(R,I) to A° = W(R°)/I and A = A°[1/p].



If you start with a perfectoid field K of characteristic zero, we know K is a
perfectoid field of characteristic p. If R = F' is a perfectoid field of characteristic
p and I is any primitive ideal of degree 1 of W (F°), then our functor gives (R, I)*
a perfectoid field of characteristic zero, with tilt F'. So we see that we can recover
every perfectoid field of characteristic zero as an “untilt” (R, I)%.

Fontaine-Wintenberger theorem: Take K, a finite extension of Q,, L an
algebraic extension of K which is infinitely ramified and such that the Galois
group of the Galois closure is a p-adic Lie group. Then the norm field is iso-
morphic to kr((t)), and this proves the isomorphism of Galois groups. If you
take K to be the completion of L, then K is a perfectoid field and K is the
completion of the radical of kr,((¢)).

If K is a fixed perfectoid field of characteristic zero, have O : W(K*°) — K°
and ker O = (£), and then if A is a perfectoid k-algebra it corresponds to
(A°, (£)) which recovers the equivalence of categories of perfectoid algebras over
K and over K°.

Now, let k be a perfect field of characteristic zero, E an ultrametric field
whose residue field is k. Then define

Wge(R) = EO®W(k)W(R) = @(Eo/ﬂ'n) Ow (k) W(R).

There’s a map R — Wge(R) by  +— 1&[x] = [z], which is a multiplicative
section of Wgo(R) — R. (If E has characteristic p then the Teichmiiller lift is
just [2] =z and R € Wge(R) = E,®@,R).

If R is a perfectoid k-algebra (where k is just a subfield of R° with the
discrete topology), can consider the ring Wgo (R°). Then if we choose pseudo-
uniformizers 7 of £ and w of R. We then define the ring

1 1
By(R) =Wge(R) | =, — | -
b(R) = Wen () | . L
If E° is a DVR, we can choose 7 a uniformizer, and can check that B%(R)
is the set of elements ‘
D laiw

>>—00

with a; € R and the set {a;} bounded. In general, if (a,)nen is a sequence in R
and (Vp)nen with v, € E and v, — 0, can form an element Y [a,]v, € B%(R).
Can form any element of BY(R) this way, but the expression is not unique.

If we choose an absolute value on E and a power multiplicative norm on
R, this defines a power multiplicative norm on B%(R). Individually, all of the
norms on E are equivalent and all of the norms on R are equivalent, but the
induced norms on BY%(R) aren’t necessarily equivalent if we vary both of the
norms. So what we do is fix a power-multiplicative norm | - | on R.

Proposition 1. For all p € R, there exists a unique power multiplicative norm
|- |, on B4 (R) such that if a € R then |[a]|, = |a| and such that ||, = p.



Now, choose a nonempty interval I = [p1, p2] with 0 < p; < ps < 1. Define
laf; = max{|al,y,, |al,, } = sup{lal, : p € I}

This gives yet another a power-multiplicative norm, so we can complete with
respect to it and get a spectral E-algebra Bg (R). Then, if F is a perfectoid
field, one can show that Bg ;(R) is a perfectoid E-algebra. Moreover, the tilt
Bg,1(R)" is By ;(R).

Finally, can use this setup to define Bqr and Bc,ys in the general context.
Let A be a perfectoid Q,-algebra. Define

Bin(A) = lim B, (4)

for B,,(A) is the infinitesimal thickening of degree < n — 1 of A in the category
of Qp-Banach algebras. If you want a nice proof of existence, you take 6 :
W(A*®) — A°, invert p to get 6 : W(A*)[1/p] - A, show the kernel is (¢), and
B, (A) = W(A™)[1/p]/ (). To get Bar(A) take Bj;(A)[1/€].

How about Beys? Define AL (A) as the sub-W (R°)-algebra of W (R°)[1/p]
generated by the £ /m!. Then Aeys(A) is the completion, B ((A) = Aerys(A)[1/p],
and then can get Beys(A).



