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Summary: In this talk the speaker introduces the Lubin-Tate spaces via the
deformation theory of formal groups. Deformation theory of formal groups gives
a tower of adic spaces, and by using the theory of perfectoid spaces one can in-
terpret the inverse limit of this tower as an actual geometric object. By working
in this infinite level setting, we can obtain a much nicer theory than exists at
any finite level. Finally, we begin describing how to relate these constructions
to p-adic Hodge theory.

A first motivation for the Lubin-Tate space: Let X(Npm) be the usual
modular curve considered as a rigid space. The supersingular locus will be a
disjoint union ∐

X(N)(Fp)ss

Mm

whereMm is the m-th Lubin-Tate space.
We now discuss the Lubin-Tate deformation problem. Let k be a perfect field

of characteristic p (in fact assume it’s algebraically closed for simplicity). Let
H0 be a 1-dimensional formal group over k of height n <∞ (which excludes the
formal additive group). Then H0 can be defined in terms of a formal addition
law given by power series

X +H0
Y = X + Y + higher-order terms.

Also, it has a multiplication law [p]H0(T ) = f(T p
n

) for a power series f(T ) =
cT + · · · with c 6= 0.

A more mature point of view is to look at H0 as a formal scheme Spf k[[T ]],
and in fact a group object in the category of Zp-formal schemes over k. For the
purposes of this talk we’ll say an “adic k-algebra” is a topological k-algebra R
complete with respect to I ⊆ R. We then have H0(R) ∼= Nil(R) =

√
I, where

Nil(R) is the set of topologically nilpotent elements.
Now, we want to do deformation theory - we’ll do this in the category C

of complete Noetherian W (k)-algebras with residue field k (where W (k) is the
ring of Witt vectors). Then:
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Theorem 1. Take the functor C → Set defined by R 7→ {(H, ι)}/∼ where
H/R is a formal group, ι : H0 → H ⊗R k is an isomorphism, and we go modulo
isomorphisms of these objects. This functor is representable by a ring A0 which
is (non-canonically) isomorphic to W (k)[[u1, . . . , un−1]].

Remark: Let OD be the endomorphism algebra of H0; this contains Zp
because H0 is a Zp-module. (Called it OD because if we take D = OD ⊗
Qp then this is a division algorithm of invariant i/n). Then O×D acts on the
functor and therefore on the representing object A0. The induced action on
W (k)[[u1, . . . , un−1]] is very mysterious; we don’t know of any formula for the
action if n ≥ 2.

Starting with this A0, Drinfeld defined a tower of rings

A0 → A1 → A2 → · · ·

where Am classifies triples (H, ι, ϕ) over R, where ϕ is a Drinfeld level struc-
ture (which is a homomorphism ϕ : (Z/pmZ)⊕n → H[pm] with some other
conditions).

The example of n = 1 is local class field theory. In particular, in this situation
H0
∼= Ĝm, the formal multiplicative group. Then A0 = W (k), which we’ll

call OK0 . More generally, Am = W (k)[ζpm ], which we’ll call OKm . (Remark:
for k algebraically closed, H0 is determined up to isomorphism by the height
n. For n = 2 we have H0 = Ê for E/k a supersingular elliptic curve; then
Am = ÔX(Npm),x for x ∈ X(Npm)(k)ss).

Now we pass to the generic fiber

M(0)
H0,m

= (Spf Am)ad
η .

Why the (0)? In our deformation problem required ι to be an isomorphism. If we
instead allow it to be a quasi-isogeny of height j, you get a different deformation
problem and resulting generic fiberM(j)

H0,m
. This is non-canonically isomorphic

to M(0)
H0,m

. What is a quasi-isogeny of a formal group? An isogeny of formal
groups is a power series that commutes with the group operation, and quasi-
isogeny is something that is an isomorphism in the isogeny category.

Why do we do this? We want to define a tower with as big of a group acting
on it as possible. LetMH0,m denote

∐
j∈ZM

(j)
m . Before,M(0)

m had an action of
O×D, butMH0,m has an action of the full group D×. Now, we want to formulate
an object at infinite level

MH0,∞ = lim←−
m

MH0,m;

this is the Lubin-Tate tower (which for now we just takes as a formal object).
It has the action of GLn(Qp) × D×, and the cohomology realizes the local
Langlands correspondence! To study cohomology it’s okay to study at the tower
at finite level and take limits of cohomology groups. But we want to study the
whole thing as a geometric object.
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So consider the case n = 1. Then we know M(0)
H0,m

= Spa(Km,OKm
).

Morally speaking, we want to have

M(0)
H0,∞ = Spa(K∞,OK∞)

for K∞ = (
⋃
mKm)∧. But this is a perfectoid field!

What should MH0,∞ represent as a functor (for general n)? We had a
moduli interpretation originally but then we passed to the generic fiber, which
makes things a bit subtle. Anyway, for an affinoid K0-algebra (R,R+), the adic
spaceMH0,∞(R,R+) naively should parametrize triples (G, ι, ϕ) up to isogeny,
with G/R+ a formal group, ι : H0 ⊗k R+/p → G →R+ R+/p a quasi-isogeny,
and ϕ : Qnp ∼= V G a level structure, where V G is the rational Tate module of
G, V G = TG⊗Qp for TG = lim←−mG[pm](R+).

Why is this naive? Well, first of all R+ is not necessarily p-adically com-
plete, and we don’t want to talk about formal groups over non-complete things.
Secondly, we want the representing functor to be a sheaf; what we’ve defined is
a presheaf, and we sheafify for the topology defined by rational subsets (which
is the usual topology on Spa(R,R+)).

Return to the case n = 1. When we take the connected ting M(0)
H0,∞ and

evaluate it at (R,R+) we get HomOK0
(OK∞ , R

+). This essentially corresponds
to choosing where to put the roots of unity. So it’s equal to the Tate module
Tµp∞(R+)prim (where Tµp∞(R+) is a rank-1 module and the “prim” means
we’re restricting to elements that give a basis). Similarly, MH0,∞(R,R+) is
V µp∞(R+) \ {0}.

Our next topic is formal vector spaces. Let R be a ring in which p is topolog-
ically nilpotent and H/R is a formal group that’s p-divisible. Define H̃ as the
inverse limit lim←−H where the transition maps are multiplication-by-p, where we
work in the category of formal schemes. When we take this inverse limit we get
a Zp-module, but moreover the action of p is invertible so we get a Qp-vector
space object in the category of formal schemes. Call it a formal vector space.

Orienting example: If we consider the abstract group Qp/Zp, doing this same
inverse limit process is Qp.

Proposition 2. Consider our original formal group H0/k. The formal vector
space H̃0 is representable, and isomorphic to Spf k[[T 1/p∞ ]].

Proposition 3. Suppose H/R is a p-divisible formal group. Get a Qp-linear
homomorphism H̃(R)→ H̃(R/p), which is an isomorphism.

Combining these two propositions we can see:

Proposition 4. Let H/OK0
be a lift of H0 (chosen arbitrarily). Then H̃ ∼=

Spf OK0
[[T 1/p∞ ]]; in particular it’s independent of the choice of lift H.

Corollary 5. Let K/K0 be a perfectoid field (possibly K = Cp), and set η =

Spa(K,OK). Then H̃ad
η is a perfectoid space.
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The underlying object of H̃ad
η is a 1-dimensional perfectoid unit disc, and it

is a Qp-vector space object in the category of perfectoid spaces. Also, since the
division algebra D acts by isogenies on H0, it acts by isomorphisms on H̃0, and
these actions lift canonically to give an action of D on H̃.

Back to the context of the Lubin-Tate space. Let (R,R+) be a perfectoid
K-algebra and let (G, ι, ϕ) be a point inMH0,∞(R,R+). Starting with

ϕ : Qnp ∼= V G(R+) = Qp ⊗ lim←−G[pm](R+).

But, lim←−G[pm](R+) sits inside of lim←−G(R+) = G̃(R+). We’ve seen that this is
isomorphic to G(R+/p), and via ι−1 this is isomorphic to H̃0(R+/p) ∼= H̃(R+).
This determines a morphism MH0,∞ → (H̃ad

η )n. This morphism does not ap-
pear at finite levels, only at infinite level.

The next step is to connect to p-adic Hodge theory. Notation as before;
H0/k a formal group that’s p-divisible, so it has a Dieudonné module M(H0)
(which is a W (k)-module with endomorphisms F, V with FV = p). Let R be a
k-algebra; we say R is “f -semiperfect” if R = S/I with S perfect and I finitely
generated. (Example: OCp

/p ∼= OC[
p
/p[).

Theorem 6 (Scholze-Weinstein). If R is f -semiperfect then

H̃0(R) ∼= HomF,ϕ(M(H0), B+
crys(R)) ∼= B+

crys(R)ϕ
n=p.

As a consequence, get following fact about formal linear algebra. If
∧r

M(H0)
is the r-th exterior power of the Dieudonné module, it’s a Dieudonné module
again, of some object we call

∧r
H0. By the theorem,

H̃0(R)⊕r ∼= Hom(M(H0)r, B+
crys(R))

and we can map this to

Hom(ΛrM(H0), B+
crys(R)) ∼= Λ̃rH0(R).

So we get a Qp-alternating map H̃0(R)r → Λ̃rH0(R).
Now, recall we had a morphismMH0,∞ → (H̃ad

η )n. We also haveMΛnH0,∞ →

Λ̃nH
ad

η . The discussion in the previous paragraph lets us induce a morphism

det : (H̃ad
η )n → Λ̃nH

ad

η . Then:

Theorem 7. There is a Cartesian diagram

MH0,∞ (H̃ad
η )n

MΛnH0,∞ Λ̃nH
ad

η .

det

Moreover all objects here carry an action of GLn(Qp)×D× that gives an action
of Q×p via det ·N−1.

4



In fact, since MH0,∞ is the only object in this diagram we haven’t fully
defined, we can take this as a definition of this object as a fiber product (since
those exist in the category of perfectoid spaces).
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