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Summary: This lecture covers the basic theory of the Fargues-Fontaine curve.
This is an adic curve (with an algebraic construction) that parametrizes all
characteristic-zero “untilts” of a fixed characteristic-p perfectoid field. Using
this curve we can thus make sense of trying to functorially untilt perfectoid
algebras. We go over the construction of this curve, and using the construction
study how we can explicitly describe it.

Suppose that K/Qp is a perfectoid field; we know it has a tilt K[ and there’s
an equivalence of perfectoid algebras over these. But what if we start with a
perfectoid field F of characteristic p? Then there’s no canonical choice of K
of characteristic zero with K[ = F . In fact, if we fix K and look at the sets
of pairs (K, ι) with K perfectoid of characteristic zero and ι : F ∼= K[ and go
modulo isomorphism and the Frobenius action (on F and thus ι) we have

{(K, ι)}/∼ ×FrobZ ∼= |XF |deg 1

where XF is an “algebraic” curve. Our goal here is to construct Xad
F .

More explicitly, we want to build functors

F -Perf → AdicQp
/Xad

F → k(x)-Perf

(where the composite is Scholze’s equivalence, and the second map depends on
a choice of x ∈ |XF | = |Xad

F |deg 1) that gives a canonical way to lift perfectoid
fields to characteristic zero.

We take the following setup: Fq is a finite field, F/Fq is perfectoid, E is
non-archimedean with a chosen element $E such that |p| ≤ |ωE | ≤ 1. For
ρ ∈ (0, 1) we can define an absolute value | · |ρ on E with |$E |ρ ∈ ρ. Now, if
A is a perfectoid F -algebra with a spectral norm | · |, for any closed interval
I ⊆ (0, 1), Fontaine’s talk constructed

BA,E,I = BE,I(A)

a perfectoid Banach E-algebra, which satisfies the following properties we need:

• If E′/E is an extension, BA,E,I⊗̂EE′ = BA,E′,I .
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• If E is perfectoid, B[A,E,I = BA,E[,I .

Further, if A is a perfectoid affinoid algebra (so comes with data of A+ ⊆ A◦),
can construct B+

A,E,I ⊆ B◦A,E,I .

Definition 1. Define an adic space YA,E,I as Spa(BA,E,I , B+
A,E,I).

If [ρ1, ρ2] = I ⊆ I ′ is a subinterval and moreover ρ1, ρ2 ∈ |F×| (with ρ1 = |a|
and ρ2 = |b|, say), then we can recover BI = BA,E,I from BI′ as

BI = BI′

〈
[a]

$E
,
$E

[b]

〉
.

So, if we have a containment of intervals I ⊆ I ′ of this form, then YI ⊆ YI′ is a
rational open.

Definition 2. Define a perfectoid space over E by

YA,E = lim←−
I⊆(0,1)

YA,E,I .

If E is perfectoid then Y [A,E = YA,E[ .

Example: Suppose E has characteristic p. Then YA,E sits over Spa(E) (by
definition) but also over Spa(A). This is because BA,E,I is an A-algebra, as there
was a Teichmüller character [·] : A→ BA,E,I which is additive in characteristic
p. Then we simply have YA,E = Spa(A) ⊗Spa(F ) YF,E . So characteristic p is
quite simple.

Proposition 3. Take elements f1, . . . , fn, g ∈ A with (f1, . . . , fn, g) = A and
consider the rational subset defined by them. Then BI is generated by the Te-
ichmüller lifts [f1], . . . , [fn], [g]; i.e.

BI = [g]BI +
∑
i

[fi]BI .

Moreover, we have

B
A〈 f1,...,fn

g 〉,E,I = BA,E,I〈 [f1],...,[fn][g] 〉.

Using this localization property, can glue the functor A 7→ YA,E to a functor
from perfectoid spaces over F to pre-perfectoid spaces over E that are fibered
over YF,E ; the resulting functor is Z 7→ YZ,E .

Now we need to talk about the Frobenius. If ρ ∈ (0, 1), set ϕ(ρ) = ρq. Then
have Frobq on A, which is the Frobenius isomorphism ϕ : BA,E,I → BA,E,ϕ(I)
of E-Banach algebras. From Fontaine’s talk, elements of BA,E,I can be written
as
∑
m[χm]λm with χm ∈ A and λm ∈ E; the Frobenius is given by

ϕ

(∑
m

[χm]λm

)
=
∑
m

[χqm]λm.
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Note we need to have arithmetic Frobenius here, not geometric; if E is discrete
with uniformizer πE , can write elements as

∑
m�−∞[χm]πmE , and Frobenius

takes it to
∑
m�−∞[χqm]πmE .

We then return to our space YZ,E → Spa(E), where Z is a perfectoid space
over F . The Frobenius ϕ induces an automorphism of YZ,E that sends something
of radius ρ to something of radius ρ1/q (which is bigger because ρ ∈ (0, 1)).

Definition 4. For a F -perfectoid space Z, we set Xad
Z,E to be the quotient

ϕZ\YZ,E . This makes sense because ϕ acts discontinuously, and the result is
a pre-perfectoid space over E. This gives the functor we wanted PerfF →
PrePerfE/X

ad
F,E . (The latter category is just the category of pre-perfectoid

spaces over E together with morphisms to Xad
F,E).

Remark: If Z is a F -perfectoid space, “FrobZ \Z” does not exist. But what
we did was take Z×SpaF YF,E , and now the quotient we want does exist.

What is this space concretely? Consider the case where E is a DVR with
uniformizer πE and residue field Fq. If E has characteristic p, so E = Fq((πE)),
then YF,E is the punctured disc D∗F which lies over Spa F and is locally of
finite type. It also lies over the punctured disc D∗Fq

= Spa Fq((πE)), but this
structure map is not of finite type. Now, if we go modulo powers of Frobenius
and consider ϕZ\D∗F , this no longer lies over F (since ϕZ\Spa F doesn’t make
sense), but it does still lie over Spa Fq((πE)) since that was Frobenius-invariant.
The action of ϕ on D∗F is as follows: a function on D∗F is of the form

∑
amπ

m
E ,

and ϕ takes this to
∑
aqmπ

m
E . (Remark: In the case of E = Fq((π1/p∞

E )), then
YF,E = D∗1/p

∞

F ).
Now consider the case where E is of characteristic zero, in particular take

E/Qp a finite extension with residue field kE = Fq. Take LT to be the Lubin-
Tate group law over OE . Let E∞ be the extension of E obtained by adjoining
the torsion points of LT (in a fixed algebraic closure) and completing. This
gives us a perfectoid field. Now, let π[E = (π

[(m)
E ) be a generator of the πE-adic

Tate module TπE
(LT ). Then we have

[πE ]LT (π
[(m+1)
E ) = π

[(m)
E .

When we reduce mod πE , find that Frobq(π
[(m+1)
E ) = π

[(m)
E . So π[E ∈ E[∞ =

Fq((π[1/p
∞

E )).
Then, we have the Lubin-Tate character χ : Gal(E∞/E)→ O×E which satis-

fies
(π[e)

σ = [χ(σ)]LT (π
[
E).

Using this, we check the following. Take G to be the Lubin-Tate group over πq,
and then as in Weinstein’s talk we can take G̃ = lim←−G, which is a formal E-
vector space. Take E = (G̃⊗̂Fq

OF )η, which is an E-Banach space. We can then
check that YF,E[

∞
∼= E \ {0}, with the Galois action of Gal(E∞/E) on YF,E[

∞

corresponding to the action of O×E on E \ {0} via the character χ.
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Back to our adic curve, we have

|Xad
F,E | = Gal(E∞/E)\|XF,E∞ | = Gal(E∞/E)\|XF,E[∞ | ∼= E×\|E \ {0}|.

This gives a description of the adic curve as a topological space.
Consider the case of F = Fq((π1/p∞

F )) and any E. Then can check that
(where T = [πF ]) we have:

YF,E ∼= D∗1/p
∞

E = {T : 0 ≤ |T | ≤ 1} ⊆ Spa E〈T 1/p∞〉.

But there’s two radius functions floating around. For r ∈ (0,∞), the radius q−r
in YF,E corresponds to radius q−1/r in the punctured disc. What’s happening
here? Consider the simpler case of E = Fq((πE)) and F = Fq((πF )). Look
at D∗E with variable πF ; this is the same as D∗F with variable πE . There is
a canonical isomorphism D∗E ∼= D∗F , and we claim that it takes radius q−r to
radius q−1/r. Why is this? Suppose we have an analytic function

∑
amπ

m
F on

D∗F , with am ∈ Fq((πE)). We can then expand this as

∑
n∈Z

(∑
m∈Z

an,mπ
m
E

)
πnF

with an,m ∈ Fq. Can then switch the order of summation and get that this
equals ∑

m∈Z

(∑
n∈Z

an,mπ
n
F

)
πmE .

But doing this switches from Gauss norm | · |q−r to | · |q−1/r .
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