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Overview: goals of relative p-adic Hodge theory

Disclaimer

The term “p-adic Hodge theory” encompasses two aspects:

external p-adic Hodge theory: comparison of cohomology theorems
(étale, de Rham, crystalline, etc.) for algebraic varieties over p-adic
fields; or

internal p-adic Hodge theory: analysis of continuous p-adic
representations of Galois groups of p-adic fields, including but not
limited to étale cohomology of algebraic varieties.

In this talk, only the internal theory is considered. For the external theory
in a similar relative setting, see Nizio l’s lectures.
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Overview: goals of relative p-adic Hodge theory

Galois representations

Let K be a p-adic field (a field of characteristic 0 complete for a discrete
valuation whose residue field is perfect of characteristic p) with absolute
Galois group GK .

In p-adic Hodge theory, one studies the categories RepZp
(GK ) and

RepQp
(GK ) of continuous representations of GK on finitely generated

Zp-modules and Qp-modules. Note that the latter is the isogeny category
of the former; that is, every Qp-representation admits GK -stable lattices.
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Overview: goals of relative p-adic Hodge theory

Local systems on analytic spaces

Let X be an adic space locally of finite type over K . For ∗ ∈ {Zp,Qp}, by
an étale ∗-local system on X , we will mean a sheaf on Xproét which is
pro-étale locally of the form

V : Y 7→ Mapcont(|Y | ,V ) (“constant sheaf”)

for V a finitely generated ∗-module with its usual topology. For instance,
if X = Spa(K ,K ◦) this is just an object of Rep∗(GK ): take the
neighborhood Y = Spa(CK ,C◦K ).

In general, étale Qp-local systems are not simply Zp-local systems up to
isogeny! There are many natural examples arising from étale covers with
noncompact groups of deck transformations: Tate uniformization of elliptic
curves, Drinfel’d uniformizations, Rapaport-Zink period morphisms...
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Overview: goals of relative p-adic Hodge theory

Local systems via perfectoid spaces

For K a p-adic field, one studies RepQp
(GK ) by passing from K to some

sufficiently ramified (strictly arithmetically profinite) algebraic extension

K∞ of K . Then K̂∞ is perfectoid; by tilting (and Krasner’s lemma)

RepQp
(GK∞) ∼= RepQp

(G
K̂∞

) ∼= RepQp
(G

K̂∞
[)

so we can use the Frobenius on K̂∞
[

to study this category.

To study RepQp
(GK ), one must add descent data; often one takes K∞/K

Galois with Γ = Gal(K∞/K ) a p-adic Lie group (e.g., K∞ = K (µp∞) with
Γ ⊆ Z×p ), and the descent data becomes a Γ-action.

But descent data can also be viewed as a sheaf condition for the pro-étale
topology, in which case we can consider all choices for K∞ at once! This
point of view adapts well to analytic spaces, using perfectoid algebras as
the analogue of strictly APF extensions.
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Period sheaves I: Witt vectors and Zp -local systems
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Period sheaves I: Witt vectors and Zp -local systems

A simplifying assumption

Hereafter, X is an adic space over Qp which is uniform: it is locally
Spa(A,A+) where A is a Banach algebra over Qp whose norm is
submultiplicative (|xy | ≤ |x ||y |) and power-multiplicative (|x2| = |x |2). In
particular X is reduced. This restriction is harmless for our purposes:

Any perfectoid space is uniform.

For any adic space X over Qp, there is a unique closed immersed
subspace X u of X which is uniform and satisfies |X u| = |X |,
X u

ét
∼= Xét, and X u

proét
∼= Xproét.

Any adic space coming from a reduced rigid analytic space or a
reduced Berkovich strictly1 analytic space has this property.

Our constructions generally do not see A+; this is related to the fact that
Spa(A,A◦)→ Spa(A,A+) retracts onto its subspace of rank 1 valuations.

1Berkovich’s non-strictly analytic spaces do not correspond to adic spaces; one needs
a parallel adic theory where elements of value groups are always comparable with R.

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 9 / 36
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Period sheaves I: Witt vectors and Zp -local systems

Affinoid perfectoid subspaces

For this section, let’s assume2 that X is locally (strongly) noetherian. Then
we may associate to X its pro-étale topology Xproét as in de Jong’s lecture.

For Y = (Yi ) ∈ Xproét, the structure sheaf on Xproét is

OX : Y 7→ lim−→
i

O(Yi ).

Each term in this limit inherits a power-multiplicative norm, its spectral
norm. This norm is also the supremum over the valuations in Yi ,
normalized p-adically.

Recall from de Jong’s lecture that Xproét has a neighborhood basis
consisting of affinoid perfectoid subspaces (i.e., each Yi comes from an
adic ring and the completed inverse limit of these is perfectoid).

2This excludes X perfectoid, but it might be helpful to pretend that this is allowed.
Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 10 / 36
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Period sheaves I: Witt vectors and Zp -local systems

The completed structure sheaf

From now on, let Y denote an arbitrary affinoid perfectoid in Xproét. We
will specify a number of additional sheaves on Xproét in terms of their
values on Y ; no promises are made about values on other pro-étale opens.

Proposition-Definition

There is a sheaf ÔX on Xproét such that ÔX (Y ) is the completion of
O(Y ) for the spectral norm.

Proposition-Definition

There is a sheaf OX on Xproét such that OX (Y ) = Ô(Y )[.

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 11 / 36
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Period sheaves I: Witt vectors and Zp -local systems

Sheaves of (overconvergent) Witt vectors

For R a perfect ring of characteristic p, the ring W (R) of Witt vectors is
p-adically separated and complete and W (R)/(p) = R. Reduction modulo
p admits a multiplicative section, the Teichmüller map x 7→ [x ].

Proposition-Definition

There is a sheaf ÃX on Xproét such that ÃX (Y ) = W (OX (Y )).

Proposition-Definition

If R carries a power-multiplicative norm, then for r > 0, the set W r (R) of
x =

∑∞
n=0 pn[xn] ∈W (R) with limn→∞ pn|xn|r = 0 is a subring of W (R).

Proposition-Definition

For any r > 0, there is a sheaf Ã†,rX on Xproét such that

Ã†,rX (Y ) = W r (OX (Y )). Put Ã†X = lim−→r→0+ Ã†,rX .

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 12 / 36
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Ã†,rX (Y ) = W r (OX (Y )). Put Ã†X = lim−→r→0+ Ã†,rX .
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Period sheaves I: Witt vectors and Zp -local systems

Nonabelian Artin-Schreier theory

For S a ring and ϕ an automorphism, a ϕ-module over S is a finite
projective S-module M equipped with an isomorphism ϕ∗M ∼= M (i.e., a
bijective semilinear ϕ-action).

Theorem (after Katz, SGA 7)

Let R be a perfect Fp-algebra. The following categories are equivalent:

étale Zp-local systems on Spec(R);

ϕ-modules over W (R);

ϕ-modules over W †(R) = ∪r>0W r (R).

For R = F a field, the functors between étale Zp-local systems (identified
with RepZp

(GF )) and ϕ-modules over W (F ) are

V 7→ (V ⊗Zp W (F ))GF , M 7→ (M ⊗W (F ) W (F ))ϕ=1

and similarly for W †(F ).
Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 13 / 36
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étale Zp-local systems on Spec(R);

ϕ-modules over W (R);

ϕ-modules over W †(R) = ∪r>0W r (R).

For R = F a field, the functors between étale Zp-local systems (identified
with RepZp

(GF )) and ϕ-modules over W (F ) are

V 7→ (V ⊗Zp W (F ))GF , M 7→ (M ⊗W (F ) W (F ))ϕ=1

and similarly for W †(F ).
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Period sheaves I: Witt vectors and Zp -local systems

Sheafified ϕ-modules

A ϕ-module over a ring sheaf ∗X on Xproét is a “quasicoherent finite
projective”3 sheaf F of ∗X -modules plus an isomorphism ϕ∗F ∼= F .

Proposition

Quasicoherent finite projective modules over ÃX

∣∣∣
Y

or Ã†X

∣∣∣
Y

correspond to

finite projective modules over ÃX (Y ) or Ã†X (Y ), respectively. Moreover,
these sheaves are acyclic.

3I.e., locally arises from a finite projective ∗X -module. Because our rings are highly
nonnoetherian, rational localizations may not be flat and so coherent sheaves cannot be
handled easily, but vector bundles are no problem.
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Period sheaves I: Witt vectors and Zp -local systems

Sheafified Artin-Schreier

Theorem

The following categories are equivalent:

étale Zp-local systems on X ;

ϕ-modules over ÃX ;

ϕ-modules over Ã†X .

The functors between étale Zp-local systems and ϕ-modules over ÃX are

T 7→ T ⊗Zp ÃX , M 7→ Mϕ=1

and similarly for Ã†X .

The analogue of taking Galois invariants in the first functor is the fact that
the restriction of a ϕ-module to Y is defined by a finite projective module.
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ϕ-modules over Ã†X .
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T 7→ T ⊗Zp ÃX , M 7→ Mϕ=1

and similarly for Ã†X .
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The functors between étale Zp-local systems and ϕ-modules over ÃX are
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Period sheaves I: Witt vectors and Zp -local systems

Cohomology of Zp-local systems

By the étale cohomology of a local system, we will mean the ordinary
cohomology on Xproét.

Theorem

For T an étale Zp-local system on X corresponding to a ϕ-module F over

ÃX and a ϕ-module F† over Ã†X , the sequences

0→ T → F∗ ϕ−1→ F∗ → 0 (∗ ∈ {∅, †})

are exact.

The point is that F∗ is acyclic on every affinoid perfectoid, not just
sufficiently small ones. (This recovers Herr’s formula for Galois
cohomology of Zp-local systems over a p-adic field.)
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Period sheaves II: Robba rings and Qp -local systems

Contents
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Period sheaves II: Robba rings and Qp -local systems

An analogy

Consider the following sequence of ring constructions.

A = lim←−n→∞(Z/pnZ)((π)), a Cohen ring with residue field Fp((π)).

A†,r : elements of A which converge for p−r ≤ |π| < 1. That is, for
x =

∑
n∈Z xnπ

n ∈ A, we have x ∈ A†,r iff limn→−∞ |xn|p−rn = 0.

A† = ∪r>0A†,r .

B∗ = A∗[p−1] for ∗ ∈ {∅; †, r ; †}.
C[s,r ]: analytic functions on the annulus p−r ≤ |π| ≤ p−s . This is the
completion of Br for the max over t ∈ [s, r ] (or even t = s, r) of the
Gauss norm |x |t = maxn{|xn|p−tn}.
Cr : analytic functions on the annulus p−r ≤ |π| < 1. This is the
Fréchet (i.e., not uniform) completion of Br for {|•|s : 0 < s ≤ r}.
C∞ = ∩r>0Cr : analytic functions on the punctured disc 0 < |π| < 1.

C = ∪r>0Cr . This is commonly called the Robba ring over Qp.

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 18 / 36
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Period sheaves II: Robba rings and Qp -local systems

Some more period sheaves

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on Xproét with the following sections.

B̃∗(Y ) = Ã∗(Y ) for ∗ ∈ {∅; †, r ; †}.
C̃[s,r ](Y ) is the completion of B̃r (Y ) for the maximum over t ∈ [s, r ]
(or even t = s, r) of the Gauss norm |x |t = maxn{p−n|xn|r}. Note
that ϕ : C̃[s,r ](Y )→ C̃[s/p,r/p](Y ) is an isomorphism. (This is one of
the rings BA,E ,I of the talks of Fargues and Fontaine with E = Qp.)

C̃r (Y ) is the Fréchet completion of B̃r (Y ) for {|•|s : 0 < s ≤ r}.
Similarly, ϕ : C̃r (Y )→ C̃r/p(Y ) is an isomorphism.

C̃∞(Y ) = ∩r>0C̃r (Y ) = lim←−r→0+ C̃r (Y ).

C̃(Y ) = ∪r>0C̃r (Y ) = lim−→r→0+ C̃r (Y ).
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C̃[s,r ](Y ) is the completion of B̃r (Y ) for the maximum over t ∈ [s, r ]
(or even t = s, r) of the Gauss norm |x |t = maxn{p−n|xn|r}. Note
that ϕ : C̃[s,r ](Y )→ C̃[s/p,r/p](Y ) is an isomorphism. (This is one of
the rings BA,E ,I of the talks of Fargues and Fontaine with E = Qp.)

C̃r (Y ) is the Fréchet completion of B̃r (Y ) for {|•|s : 0 < s ≤ r}.
Similarly, ϕ : C̃r (Y )→ C̃r/p(Y ) is an isomorphism.

C̃∞(Y ) = ∩r>0C̃r (Y ) = lim←−r→0+ C̃r (Y ).

C̃(Y ) = ∪r>0C̃r (Y ) = lim−→r→0+ C̃r (Y ).
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Period sheaves II: Robba rings and Qp -local systems

ϕ-modules over C̃X

A ϕ-module over C̃X is étale at x ∈ X if adic-locally around x it arises by
base extension from a ϕ-module over Ã†X .

Theorem

The étale condition is pointwise: it suffices to check it after pullback to
the one-point space x.

Theorem

The slope polygon (to be defined later) of any ϕ-module is a lower
semicontinuous function on X (with locally constant endpoints). If X
arose from a Berkovich space, this is also true for Berkovich’s topology
(i.e., on the maximal Hausdorff quotient of X ).

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 20 / 36
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Period sheaves II: Robba rings and Qp -local systems

Globalized Artin-Schreier

Theorem

The following categories are equivalent:

étale Qp-local systems on X ;

étale ϕ-modules over C̃X .

étale ϕ-modules over C̃∞X .

Also, for V an étale Qp-local system on X corresponding to a ϕ-module F
over C̃∗X , for ∗ ∈ {∅,∞}, the sequence

0→ V → F ϕ−1→ F → 0

is exact. (And again F is acyclic over every Y .)
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Period sheaves II: Robba rings and Qp -local systems

Future attractions: removing the puncture

One can also define sheaves Ã+
X , B̃

+
X , C̃

+
X where Ã+

X (Y ) = W (O(Y )+).
This is analogous to taking the whole unit disc, without a puncture.

One can define “Wach-Breuil-Kisin modules” over Ã+
X where the action of

ϕ is not bijective, but has controlled kernel and cokernel. These give rise
to what we should call crystalline ϕ-modules over C̃X .

But beware: this construction depends heavily on the + subrings!
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Sheaves on relative Fargues-Fontaine curves

Contents

1 Overview: goals of relative p-adic Hodge theory

2 Period sheaves I: Witt vectors and Zp-local systems

3 Period sheaves II: Robba rings and Qp-local systems

4 Sheaves on relative Fargues-Fontaine curves

5 The next frontier: imperfect period rings (and maybe sheaves)
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Sheaves on relative Fargues-Fontaine curves

Disclaimer

In this section, we take X to be perfectoid (over Qp), but not necessarily
over a perfectoid field. Now Y is an arbitrary affinoid perfectoid subspace
of X (since Xproét is tricky).

The relative curve we consider is the one from the lecture of Fargues, but
for this exposition we only take E = Qp and q = p.
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Sheaves on relative Fargues-Fontaine curves

The construction over an affinoid perfectoid

Pick any r > 0. The relative Fargues-Fontaine curve FFY is obtained4

from the “annulus” Spa(C̃
[r/p,r ]
X (Y )) by glueing the “edges”

Spa(C̃
[r/p,r/p]
X (Y )) and Spa(C̃

[r ,r ]
X (Y )) via ϕ. This is independent of r .

There is also an algebraic analogue:

FFalg
Y = Proj(PY ), PY =

∞⊕
n=0

C̃X (Y )ϕ=pn .

Theorem

There is a natural morphism FFY → FFalg
Y of locally ringed spaces which

induces an equivalence of categories of vector bundles. Moreover, these
categories are equivalent to ϕ-modules over C̃Y and C̃∞Y . (Again, we don’t
consider coherent sheaves due to non-noetherianity.)

4We’ve omitted the second inputs into Spa for brevity.
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Sheaves on relative Fargues-Fontaine curves

Slopes over a perfectoid field

Suppose X = Spa(K ,K +) for K a perfectoid field; then FFX is the

Fargues-Fontaine adic curve associated to K [. The algebraic curve FFalg
X is

a noetherian scheme of dimension 1 with a morphism
deg : Pic(FFX ) = Pic(FFalg

X )→ Z taking O(1) to 1.

For any nonzero vector bundle F on FFX , set

deg(F) = deg(∧rank(F)F).

The slope of F is µ(F) = deg(F)/ rank(F).

We say F is semistable if µ(F) ≥ µ(G) for any proper nonzero subbundle
G of F .
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Sheaves on relative Fargues-Fontaine curves

Slopes over a perfectoid field (contd.)

Suppose X = Spa(K ,K +) for K a perfectoid field.

Theorem (K, Fargues-Fontaine, et al.)

If K is algebraically closed, then every vector bundle on FFX splits as a
direct sum ⊕n

i=1O(ri/si ) for some ri/si ∈ Q. (Here O(ri/si ) is the
pushforward of O(ri ) along the finite étale map from the curve with
q = psi .)

Theorem

A ϕ-module over C̃X is étale iff the corresponding vector bundle on FFX is
semistable of degree 0.

Theorem

The tensor product of two semistable vector bundles on FFX is again
semistable.
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Sheaves on relative Fargues-Fontaine curves

Slope filtrations over a perfectoid field

Suppose X = Spa(K ,K +) for K a perfectoid field. Then every vector
bundle F on FFX admits a unique Harder-Narasimhan filtration

0 = F0 ⊂ · · · ⊂ Fm = F

such that each Fi/Fi−1 is a nonzero vector bundle which is semistable of
slope µi and µ1 > · · · > µm.

The slope polygon of F is the Newton polygon having slope µi with
multiplicity rank(Fi/Fi−1). This is flat iff F is semistable.
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Sheaves on relative Fargues-Fontaine curves

A family of curves, in a sense

For general X , we may glue the adic (but not the algebraic) construction.

Theorem

For X perfectoid, the spaces FFY glue to give an adic space FFX over Qp

which is preperfectoid (its base extension from Qp to any perfectoid field
is perfectoid). The vector bundles on FFX correspond to ϕ-modules over
C̃X . Everything is functorial in X (and so far even in X [).

In a certain sense, the space FFX is a family of Fargues-Fontaine curves.

Theorem

There is a natural continuous map |FFX | → |X | whose formation is
functorial in X . (But it doesn’t naturally arise from a map of adic spaces!)

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 29 / 36
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Sheaves on relative Fargues-Fontaine curves

Local systems revisited

Combining previous statements, we get the following.

Theorem

For X perfectoid, étale Qp-local systems on X form a category equivalent
to vector bundles on FFX which are fiberwise semistable of degree 0.
Moreover, the étale cohomology of a local system coincides with the
coherent cohomology of the corresponding vector bundle.

Theorem

The slope polygon of a vector bundle on FFX is upper semicontinuous as a
function on |X | (with locally constant endpoints). This remains true on
the maximal Hausdorff quotient of |X | provided that X is taut (closures
of quasicompact opens are quasicompact).

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 30 / 36
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Sheaves on relative Fargues-Fontaine curves

Ampleness for vector bundles

A vector bundle F on FFX is ample if for any vector bundle G on FFY ,
G ⊗ F⊗n is generated by global sections for n� 0.

Theorem

O(1) is ample. Consequently, to check ampleness we need only consider
G = O(d) for d ∈ Z (over all Y ; the powers of F need not be uniform).

Theorem

F is ample iff for all Y and d, H1(FFY ,F⊗n(d)) = 0 for n� 0.

Theorem

F is ample iff its slopes are everywhere positive. Consequently, this
condition is pointwise and open on |X |.

Kiran S. Kedlaya (UCSD) Relative p-adic Hodge theory 31 / 36
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Sheaves on relative Fargues-Fontaine curves

A distinguished section

So far, FFX has been defined entirely in terms of X [ (as in the lecture of
Fargues). But it does admit some structures that depend on X :

a distinguished ample line bundle LX of rank 1 and degree 1;

a distinguished section tX of LX .

The zero locus of tX is the image of a section X → FFX of the map
|FFX | → |X |. Unlike the fiber map, though, this is a map of adic spaces.

It should be possible to define sheaves BdR,Bcrys,Bst; for instance,

BdR,X = ̂OFFX
[t−1
X ]

where the hat denotes (tX )-adic completion.
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The next frontier: imperfect period rings (and maybe sheaves)
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The next frontier: imperfect period rings (and maybe sheaves)

The field of norms correspondence

Let K be a p-adic field. Let K∞ be a strictly arithmetically profinite (i.e.,
“sufficiently infinitely ramified”) algebraic extension of K . The
Fontaine-Wintenberger field of norms is a local field L of characteristic p

such that K̂∞
[

= L̂perf . In particular, L is imperfect.

Example: for K = Qp, K∞ = Qp(µp∞), we get L = Fp((π)).

Tilting does not find L inside L̂perf . The problem is that one must
remember not just K̂∞ but also K∞, and especially the tower of extensions
leading to K∞ via the ramification filtration.

Questions: can one similarly “deperfect” the other period rings? And what
about other naturally arising perfectoid towers, e.g., the Lubin-Tate tower?
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The next frontier: imperfect period rings (and maybe sheaves)

The example of (ϕ, Γ)-modules

For K = Qp, K∞ = Qp(µp∞), map A = lim←−n→∞(Z/pnZ)((π)) into

Ã = Ã
K̂∞

by taking 1 + π to [1 + π]. Then Γ lifts to A and A†.

Theorem (Cherbonnier-Colmez)

The categories of (ϕ, Γ)-modules (ϕ-modules with compatible Γ-action)
over A,A†, Ã, Ã† are all equivalent.

Consequently, elements of RepQp
(GK ) define ϕ-modules over the Robba

ring C. By taking sections over annuli, we get locally analytic
representations of Γ; this doesn’t happen using ϕ-modules over C̃.
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The next frontier: imperfect period rings (and maybe sheaves)

Relative Cherbonnier-Colmez

One may hope for an analogue of Cherbonnier-Colmez for other perfectoid
towers, i.e., descent of ϕ-modules with descent data from Ã to some
appropriate imperfect subring A. This would perhaps give additional
locally analytic representations sought by Berger-Colmez. (One may also
want to descent from C̃ to a suitable C.)

One well-understood case are towers arising from the standard perfectoid
tower over Pn (Andreatta-Brinon); these towers are used in the p-adic
comparison isomorphism (see Nizio l’s lectures).

Important question: what about the Lubin-Tate tower (see Weinstein’s
lectures)? And (how) is this relevant to p-adic Langlands?

See the next version of “Relative p-adic Hodge theory, II”.
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