Relative *p*-adic Hodge theory

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego kedlaya@ucsd.edu http://kskedlaya.org/slides/

Hot Topics: Perfectoid Spaces and their Applications MSRI, Berkeley, February 19, 2014

Joint work with Ruochuan Liu (BICMR, Beijing): Relative *p*-adic Hodge theory, I: Foundations, arXiv:1301.0792**v2** (**2014**). Relative *p*-adic Hodge theory, II: Imperfect period rings (in revision).

Supported by NSF (grant DMS-1101343), UCSD (Warschawski chair).

Contents

- 1 Overview: goals of relative *p*-adic Hodge theory
- 2 Period sheaves I: Witt vectors and \mathbb{Z}_p -local systems
- 3 Period sheaves II: Robba rings and \mathbb{Q}_p -local systems
- 4 Sheaves on relative Fargues-Fontaine curves
- 5 The next frontier: imperfect period rings (and maybe sheaves)

Contents

Overview: goals of relative p-adic Hodge theory

- 2) Period sheaves I: Witt vectors and \mathbb{Z}_p -local systems
- 3 Period sheaves II: Robba rings and \mathbb{Q}_p -local systems
- 4 Sheaves on relative Fargues-Fontaine curves
- 5 The next frontier: imperfect period rings (and maybe sheaves)

The term "*p*-adic Hodge theory" encompasses two aspects:

- *external p*-adic Hodge theory: comparison of cohomology theorems (étale, de Rham, crystalline, etc.) for algebraic varieties over *p*-adic fields; or
- *internal p*-adic Hodge theory: analysis of continuous *p*-adic representations of Galois groups of *p*-adic fields, including but not limited to étale cohomology of algebraic varieties.

In this talk, only the internal theory is considered. For the external theory in a similar relative setting, see Nizioł's lectures.

The term "*p*-adic Hodge theory" encompasses two aspects:

- external p-adic Hodge theory: comparison of cohomology theorems (étale, de Rham, crystalline, etc.) for algebraic varieties over p-adic fields; or
- internal p-adic Hodge theory: analysis of continuous p-adic representations of Galois groups of p-adic fields, including but not limited to étale cohomology of algebraic varieties.

In this talk, only the internal theory is considered. For the external theory in a similar relative setting, see Nizioł's lectures.

The term "*p*-adic Hodge theory" encompasses two aspects:

- external p-adic Hodge theory: comparison of cohomology theorems (étale, de Rham, crystalline, etc.) for algebraic varieties over p-adic fields; or
- internal p-adic Hodge theory: analysis of continuous p-adic representations of Galois groups of p-adic fields, including but not limited to étale cohomology of algebraic varieties.

In this talk, only the internal theory is considered. For the external theory in a similar relative setting, see Nizioł's lectures.

The term "*p*-adic Hodge theory" encompasses two aspects:

- external p-adic Hodge theory: comparison of cohomology theorems (étale, de Rham, crystalline, etc.) for algebraic varieties over p-adic fields; or
- internal p-adic Hodge theory: analysis of continuous p-adic representations of Galois groups of p-adic fields, including but not limited to étale cohomology of algebraic varieties.

In this talk, only the internal theory is considered. For the external theory in a similar relative setting, see Niziol's lectures.

Galois representations

Let K be a *p*-adic field (a field of characteristic 0 complete for a discrete valuation whose residue field is perfect of characteristic p) with absolute Galois group G_K .

In *p*-adic Hodge theory, one studies the categories $\operatorname{Rep}_{\mathbb{Z}_p}(G_K)$ and $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ of continuous representations of G_K on finitely generated \mathbb{Z}_p -modules and \mathbb{Q}_p -modules. Note that the latter is the isogeny category of the former; that is, every \mathbb{Q}_p -representation admits G_K -stable lattices.

Galois representations

Let K be a *p*-adic field (a field of characteristic 0 complete for a discrete valuation whose residue field is perfect of characteristic p) with absolute Galois group G_K .

In *p*-adic Hodge theory, one studies the categories $\operatorname{Rep}_{\mathbb{Z}_p}(G_K)$ and $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ of continuous representations of G_K on finitely generated \mathbb{Z}_p -modules and \mathbb{Q}_p -modules. Note that the latter is the isogeny category of the former; that is, every \mathbb{Q}_p -representation admits G_K -stable lattices.

Local systems on analytic spaces

Let X be an adic space locally of finite type over K. For $* \in \{\mathbb{Z}_p, \mathbb{Q}_p\}$, by an *étale* *-*local system* on X, we will mean a sheaf on $X_{\text{proét}}$ which is pro-étale locally of the form

 $\underline{V}: Y \mapsto \mathsf{Map}_{\mathsf{cont}}(|Y|, V) \qquad (\text{``constant sheaf''})$

for V a finitely generated *-module with its usual topology. For instance, if $X = \text{Spa}(K, K^{\circ})$ this is just an object of $\text{Rep}_{*}(G_{K})$: take the neighborhood $Y = \text{Spa}(\mathbb{C}_{K}, \mathbb{C}_{K}^{\circ})$.

In general, étale \mathbb{Q}_p -local systems are not simply \mathbb{Z}_p -local systems up to isogeny! There are many natural examples arising from étale covers with noncompact groups of deck transformations: Tate uniformization of elliptic curves, Drinfel'd uniformizations, Rapaport-Zink period morphisms...

Local systems on analytic spaces

Let X be an adic space locally of finite type over K. For $* \in \{\mathbb{Z}_p, \mathbb{Q}_p\}$, by an *étale* *-*local system* on X, we will mean a sheaf on $X_{\text{proét}}$ which is pro-étale locally of the form

 $\underline{V}: Y \mapsto \mathsf{Map}_{\mathsf{cont}}(|Y|, V) \qquad (\text{``constant sheaf''})$

for V a finitely generated *-module with its usual topology. For instance, if $X = \text{Spa}(K, K^{\circ})$ this is just an object of $\text{Rep}_{*}(G_{K})$: take the neighborhood $Y = \text{Spa}(\mathbb{C}_{K}, \mathbb{C}_{K}^{\circ})$.

In general, étale \mathbb{Q}_p -local systems are not simply \mathbb{Z}_p -local systems up to isogeny! There are many natural examples arising from étale covers with noncompact groups of deck transformations: Tate uniformization of elliptic curves, Drinfel'd uniformizations, Rapaport-Zink period morphisms...

Local systems via perfectoid spaces

For K a *p*-adic field, one studies $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ by passing from K to some sufficiently ramified (*strictly arithmetically profinite*) algebraic extension K_{∞} of K. Then $\widehat{K_{\infty}}$ is perfectoid; by tilting (and Krasner's lemma)

$$\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\mathcal{K}_\infty})\cong\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\widehat{\mathcal{K}_\infty}})\cong\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\widehat{\mathcal{K}_\infty}})$$

so we can use the Frobenius on $\widehat{\mathcal{K}_{\infty}}^{\flat}$ to study this category.

To study $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$, one must add descent data; often one takes K_{∞}/K Galois with $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ a *p*-adic Lie group (e.g., $K_{\infty} = K(\mu_{p^{\infty}})$ with $\Gamma \subseteq \mathbb{Z}_p^{\times}$), and the descent data becomes a Γ -action.

But descent data can also be viewed as a sheaf condition for the pro-étale topology, in which case we can consider all choices for K_{∞} at once! This point of view adapts well to analytic spaces, using perfectoid algebras as the analogue of strictly APF extensions.

Local systems via perfectoid spaces

For K a *p*-adic field, one studies $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ by passing from K to some sufficiently ramified (*strictly arithmetically profinite*) algebraic extension K_{∞} of K. Then $\widehat{K_{\infty}}$ is perfectoid; by tilting (and Krasner's lemma)

$$\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\mathcal{K}_\infty})\cong\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\widehat{\mathcal{K}_\infty}})\cong\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\widehat{\mathcal{K}_\infty}})$$

so we can use the Frobenius on $\widehat{\mathcal{K}_{\infty}}^{\flat}$ to study this category.

To study $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$, one must add descent data; often one takes K_{∞}/K Galois with $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ a *p*-adic Lie group (e.g., $K_{\infty} = K(\mu_{p^{\infty}})$ with $\Gamma \subseteq \mathbb{Z}_p^{\times}$), and the descent data becomes a Γ -action.

But descent data can also be viewed as a sheaf condition for the pro-étale topology, in which case we can consider all choices for K_{∞} at once! This point of view adapts well to analytic spaces, using perfectoid algebras as the analogue of strictly APF extensions.

Kiran S. Kedlaya (UCSD)

Local systems via perfectoid spaces

For K a *p*-adic field, one studies $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ by passing from K to some sufficiently ramified (*strictly arithmetically profinite*) algebraic extension K_{∞} of K. Then $\widehat{K_{\infty}}$ is perfectoid; by tilting (and Krasner's lemma)

$$\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\mathcal{K}_\infty})\cong\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\widehat{\mathcal{K}_\infty}})\cong\operatorname{\mathsf{Rep}}_{\mathbb{Q}_p}(\mathcal{G}_{\widehat{\mathcal{K}_\infty}})$$

so we can use the Frobenius on $\widehat{\mathcal{K}_{\infty}}^{\flat}$ to study this category.

To study $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$, one must add descent data; often one takes K_{∞}/K Galois with $\Gamma = \operatorname{Gal}(K_{\infty}/K)$ a *p*-adic Lie group (e.g., $K_{\infty} = K(\mu_{p^{\infty}})$ with $\Gamma \subseteq \mathbb{Z}_p^{\times}$), and the descent data becomes a Γ -action.

But descent data can also be viewed as a sheaf condition for the pro-étale topology, in which case we can consider all choices for K_{∞} at once! This point of view adapts well to analytic spaces, using perfectoid algebras as the analogue of strictly APF extensions.

Kiran S. Kedlaya (UCSD)

Contents

Overview: goals of relative *p*-adic Hodge theory

2 Period sheaves I: Witt vectors and \mathbb{Z}_p -local systems

3) Period sheaves II: Robba rings and \mathbb{Q}_p -local systems

4 Sheaves on relative Fargues-Fontaine curves

5 The next frontier: imperfect period rings (and maybe sheaves)

Hereafter, X is an adic space over \mathbb{Q}_p which is *uniform*: it is locally $\text{Spa}(A, A^+)$ where A is a Banach algebra over \mathbb{Q}_p whose norm is *submultiplicative* ($|xy| \le |x||y|$) and *power-multiplicative* ($|x^2| = |x|^2$). In particular X is reduced. This restriction is harmless for our purposes:

• Any perfectoid space is uniform.

- For any adic space X over \mathbb{Q}_p , there is a unique closed immersed subspace X^u of X which is uniform and satisfies $|X^u| = |X|$, $X^u_{\text{ét}} \cong X_{\text{ét}}$, and $X^u_{\text{proét}} \cong X_{\text{proét}}$.
- Any adic space coming from a reduced rigid analytic space or a reduced Berkovich strictly¹ analytic space has this property.

¹Berkovich's non-strictly analytic spaces do not correspond to adic spaces; one needs a parallel adic theory where elements of value groups are always comparable with \mathbb{R} .

Hereafter, X is an adic space over \mathbb{Q}_p which is *uniform*: it is locally $\text{Spa}(A, A^+)$ where A is a Banach algebra over \mathbb{Q}_p whose norm is *submultiplicative* ($|xy| \le |x||y|$) and *power-multiplicative* ($|x^2| = |x|^2$). In particular X is reduced. This restriction is harmless for our purposes:

• Any perfectoid space is uniform.

- For any adic space X over \mathbb{Q}_p , there is a unique closed immersed subspace X^u of X which is uniform and satisfies $|X^u| = |X|$, $X^u_{\text{ét}} \cong X_{\text{ét}}$, and $X^u_{\text{proét}} \cong X_{\text{proét}}$.
- Any adic space coming from a reduced rigid analytic space or a reduced Berkovich strictly¹ analytic space has this property.

¹Berkovich's non-strictly analytic spaces do not correspond to adic spaces; one needs a parallel adic theory where elements of value groups are always comparable with \mathbb{R} .

Hereafter, X is an adic space over \mathbb{Q}_p which is *uniform*: it is locally $\text{Spa}(A, A^+)$ where A is a Banach algebra over \mathbb{Q}_p whose norm is *submultiplicative* ($|xy| \le |x||y|$) and *power-multiplicative* ($|x^2| = |x|^2$). In particular X is reduced. This restriction is harmless for our purposes:

- Any perfectoid space is uniform.
- For any adic space X over \mathbb{Q}_p , there is a unique closed immersed subspace X^u of X which is uniform and satisfies $|X^u| = |X|$, $X^u_{\text{ét}} \cong X_{\text{ét}}$, and $X^u_{\text{proét}} \cong X_{\text{proét}}$.
- Any adic space coming from a reduced rigid analytic space or a reduced Berkovich strictly¹ analytic space has this property.

¹Berkovich's non-strictly analytic spaces do not correspond to adic spaces; one needs a parallel adic theory where elements of value groups are always comparable with \mathbb{R} .

Hereafter, X is an adic space over \mathbb{Q}_p which is *uniform*: it is locally $\text{Spa}(A, A^+)$ where A is a Banach algebra over \mathbb{Q}_p whose norm is *submultiplicative* ($|xy| \le |x||y|$) and *power-multiplicative* ($|x^2| = |x|^2$). In particular X is reduced. This restriction is harmless for our purposes:

- Any perfectoid space is uniform.
- For any adic space X over \mathbb{Q}_p , there is a unique closed immersed subspace X^u of X which is uniform and satisfies $|X^u| = |X|$, $X^u_{\text{ét}} \cong X_{\text{ét}}$, and $X^u_{\text{proét}} \cong X_{\text{proét}}$.
- Any adic space coming from a reduced rigid analytic space or a reduced Berkovich strictly¹ analytic space has this property.

¹Berkovich's non-strictly analytic spaces do not correspond to adic spaces; one needs a parallel adic theory where elements of value groups are always comparable with \mathbb{R} .

Hereafter, X is an adic space over \mathbb{Q}_p which is *uniform*: it is locally $\text{Spa}(A, A^+)$ where A is a Banach algebra over \mathbb{Q}_p whose norm is *submultiplicative* ($|xy| \le |x||y|$) and *power-multiplicative* ($|x^2| = |x|^2$). In particular X is reduced. This restriction is harmless for our purposes:

- Any perfectoid space is uniform.
- For any adic space X over Q_p, there is a unique closed immersed subspace X^u of X which is uniform and satisfies |X^u| = |X|, X^u_{ét} ≅ X_{ét}, and X^u_{proét} ≅ X_{proét}.
- Any adic space coming from a reduced rigid analytic space or a reduced Berkovich strictly¹ analytic space has this property.

¹Berkovich's non-strictly analytic spaces do not correspond to adic spaces; one needs a parallel adic theory where elements of value groups are always comparable with \mathbb{R} .

Affinoid perfectoid subspaces

For this section, let's assume² that X is locally (strongly) noetherian. Then we may associate to X its *pro-étale topology* $X_{\text{proét}}$ as in de Jong's lecture.

For $Y = (Y_i) \in X_{\text{pro\acute{e}t}}$, the *structure sheaf* on $X_{\text{pro\acute{e}t}}$ is

$$\mathcal{O}_X: Y \mapsto \varinjlim_i \mathcal{O}(Y_i).$$

Each term in this limit inherits a power-multiplicative norm, its *spectral* norm. This norm is also the supremum over the valuations in Y_i , normalized *p*-adically.

Recall from de Jong's lecture that $X_{\text{proét}}$ has a neighborhood basis consisting of *affinoid perfectoid* subspaces (i.e., each Y_i comes from an adic ring and the completed inverse limit of these is perfectoid).

²This excludes X perfectoid, but it might be helpful to pretend that this is allowed. Kiran S. Kedlaya (UCSD) Relative *p*-adic Hodge theory 10/36

Affinoid perfectoid subspaces

For this section, let's assume² that X is locally (strongly) noetherian. Then we may associate to X its *pro-étale topology* $X_{\text{proét}}$ as in de Jong's lecture.

For $Y = (Y_i) \in X_{\text{pro\acute{e}t}}$, the *structure sheaf* on $X_{\text{pro\acute{e}t}}$ is

$$\mathcal{O}_X: Y \mapsto \varinjlim_i \mathcal{O}(Y_i).$$

Each term in this limit inherits a power-multiplicative norm, its *spectral* norm. This norm is also the supremum over the valuations in Y_i , normalized *p*-adically.

Recall from de Jong's lecture that $X_{\text{proét}}$ has a neighborhood basis consisting of *affinoid perfectoid* subspaces (i.e., each Y_i comes from an adic ring and the completed inverse limit of these is perfectoid).

²This excludes X perfectoid, but it might be helpful to pretend that this is allowed. Kiran S. Kedlaya (UCSD) Relative *p*-adic Hodge theory 10/36

Affinoid perfectoid subspaces

For this section, let's assume² that X is locally (strongly) noetherian. Then we may associate to X its *pro-étale topology* $X_{\text{proét}}$ as in de Jong's lecture.

For $Y = (Y_i) \in X_{\mathsf{pro\acute{e}t}}$, the *structure sheaf* on $X_{\mathsf{pro\acute{e}t}}$ is

$$\mathcal{O}_X: Y \mapsto \varinjlim_i \mathcal{O}(Y_i).$$

Each term in this limit inherits a power-multiplicative norm, its *spectral* norm. This norm is also the supremum over the valuations in Y_i , normalized *p*-adically.

Recall from de Jong's lecture that $X_{\text{proét}}$ has a neighborhood basis consisting of *affinoid perfectoid* subspaces (i.e., each Y_i comes from an adic ring and the completed inverse limit of these is perfectoid).

²This excludes X perfectoid, but it might be helpful to pretend that this is allowed. Kiran S. Kedlaya (UCSD) Relative *p*-adic Hodge theory 10/36

The completed structure sheaf

From now on, let Y denote an arbitrary affinoid perfectoid in $X_{\text{proét}}$. We will specify a number of additional sheaves on $X_{\text{proét}}$ in terms of their values on Y; no promises are made about values on other pro-étale opens.

Proposition-Definition

There is a sheaf $\widehat{\mathcal{O}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\widehat{\mathcal{O}}_X(Y)$ is the completion of $\mathcal{O}(Y)$ for the spectral norm.

There is a sheaf
$$\overline{\mathcal{O}}_X$$
 on $X_{\mathsf{pro\acute{e}t}}$ such that $\overline{\mathcal{O}}_X(Y) = \widehat{\mathcal{O}}(Y)^{\flat}$.

The completed structure sheaf

From now on, let Y denote an arbitrary affinoid perfectoid in $X_{\text{proét}}$. We will specify a number of additional sheaves on $X_{\text{proét}}$ in terms of their values on Y; no promises are made about values on other pro-étale opens.

Proposition-Definition

There is a sheaf $\widehat{\mathcal{O}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\widehat{\mathcal{O}}_X(Y)$ is the completion of $\mathcal{O}(Y)$ for the spectral norm.

There is a sheaf
$$\overline{\mathcal{O}}_X$$
 on $X_{\mathsf{pro\acute{e}t}}$ such that $\overline{\mathcal{O}}_X(Y) = \widehat{\mathcal{O}}(Y)^{\flat}$.

The completed structure sheaf

From now on, let Y denote an arbitrary affinoid perfectoid in $X_{\text{proét}}$. We will specify a number of additional sheaves on $X_{\text{proét}}$ in terms of their values on Y; no promises are made about values on other pro-étale opens.

Proposition-Definition

There is a sheaf $\widehat{\mathcal{O}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\widehat{\mathcal{O}}_X(Y)$ is the completion of $\mathcal{O}(Y)$ for the spectral norm.

There is a sheaf
$$\overline{\mathcal{O}}_X$$
 on $X_{\mathsf{pro\acute{e}t}}$ such that $\overline{\mathcal{O}}_X(Y) = \widehat{\mathcal{O}}(Y)^\flat$.

For *R* a perfect ring of characteristic *p*, the ring W(R) of Witt vectors is *p*-adically separated and complete and W(R)/(p) = R. Reduction modulo *p* admits a multiplicative section, the Teichmüller map $\overline{x} \mapsto [\overline{x}]$.

Proposition-Definition

There is a sheaf $\tilde{\mathbf{A}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X(Y) = W(\overline{\mathcal{O}}_X(Y))$.

Proposition-Definition

If R carries a power-multiplicative norm, then for r > 0, the set $W^r(R)$ of $x = \sum_{n=0}^{\infty} p^n[\overline{x}_n] \in W(R)$ with $\lim_{n\to\infty} p^n |\overline{x}_n|^r = 0$ is a subring of W(R).

For any
$$r > 0$$
, there is a sheaf $\tilde{\mathbf{A}}_X^{\dagger,r}$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X^{\dagger,r}(Y) = W^r(\overline{\mathcal{O}}_X(Y))$. Put $\tilde{\mathbf{A}}_X^{\dagger} = \varinjlim_{r \to 0^+} \tilde{\mathbf{A}}_X^{\dagger,r}$.

For *R* a perfect ring of characteristic *p*, the ring W(R) of Witt vectors is *p*-adically separated and complete and W(R)/(p) = R. Reduction modulo *p* admits a multiplicative section, the Teichmüller map $\overline{x} \mapsto [\overline{x}]$.

Proposition-Definition

There is a sheaf $\tilde{\mathbf{A}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X(Y) = W(\overline{\mathcal{O}}_X(Y))$.

Proposition-Definition

If R carries a power-multiplicative norm, then for r > 0, the set $W^r(R)$ of $x = \sum_{n=0}^{\infty} p^n[\overline{x}_n] \in W(R)$ with $\lim_{n\to\infty} p^n |\overline{x}_n|^r = 0$ is a subring of W(R).

For any
$$r > 0$$
, there is a sheaf $\tilde{\mathbf{A}}_X^{\dagger,r}$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X^{\dagger,r}(Y) = W^r(\overline{\mathcal{O}}_X(Y))$. Put $\tilde{\mathbf{A}}_X^{\dagger} = \varinjlim_{r \to 0^+} \tilde{\mathbf{A}}_X^{\dagger,r}$.

For *R* a perfect ring of characteristic *p*, the ring W(R) of Witt vectors is *p*-adically separated and complete and W(R)/(p) = R. Reduction modulo *p* admits a multiplicative section, the Teichmüller map $\overline{x} \mapsto [\overline{x}]$.

Proposition-Definition

There is a sheaf $\tilde{\mathbf{A}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X(Y) = W(\overline{\mathcal{O}}_X(Y))$.

Proposition-Definition

If *R* carries a power-multiplicative norm, then for r > 0, the set $W^r(R)$ of $x = \sum_{n=0}^{\infty} p^n[\overline{x}_n] \in W(R)$ with $\lim_{n\to\infty} p^n|\overline{x}_n|^r = 0$ is a subring of W(R).

For any
$$r > 0$$
, there is a sheaf $\tilde{\mathbf{A}}_X^{\dagger,r}$ on $X_{\text{proét}}$ such that $\tilde{\mathbf{A}}_X^{\dagger,r}(Y) = W^r(\overline{\mathcal{O}}_X(Y))$. Put $\tilde{\mathbf{A}}_X^{\dagger} = \varinjlim_{r \to 0^+} \tilde{\mathbf{A}}_X^{\dagger,r}$.

For *R* a perfect ring of characteristic *p*, the ring W(R) of Witt vectors is *p*-adically separated and complete and W(R)/(p) = R. Reduction modulo *p* admits a multiplicative section, the Teichmüller map $\overline{x} \mapsto [\overline{x}]$.

Proposition-Definition

There is a sheaf $\tilde{\mathbf{A}}_X$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X(Y) = W(\overline{\mathcal{O}}_X(Y))$.

Proposition-Definition

If R carries a power-multiplicative norm, then for r > 0, the set $W^r(R)$ of $x = \sum_{n=0}^{\infty} p^n[\overline{x}_n] \in W(R)$ with $\lim_{n\to\infty} p^n|\overline{x}_n|^r = 0$ is a subring of W(R).

For any
$$r > 0$$
, there is a sheaf $\tilde{\mathbf{A}}_X^{\dagger,r}$ on $X_{\text{pro\acute{e}t}}$ such that $\tilde{\mathbf{A}}_X^{\dagger,r}(Y) = W^r(\overline{\mathcal{O}}_X(Y))$. Put $\tilde{\mathbf{A}}_X^{\dagger} = \varinjlim_{r \to 0^+} \tilde{\mathbf{A}}_X^{\dagger,r}$.

For S a ring and φ an automorphism, a φ -module over S is a finite projective S-module M equipped with an isomorphism $\varphi^*M \cong M$ (i.e., a bijective semilinear φ -action).

Theorem (after Katz, SGA 7)

Let R be a perfect \mathbb{F}_p -algebra. The following categories are equivalent:

- étale ℤ_p-local systems on Spec(R);
- φ -modules over W(R);
- φ -modules over $W^{\dagger}(R) = \cup_{r>0} W^{r}(R)$.

For R = F a field, the functors between étale \mathbb{Z}_p -local systems (identified with $\operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_F)$) and φ -modules over W(F) are

$$V\mapsto (V\otimes_{\mathbb{Z}_p}W(\overline{F}))^{\mathcal{G}_F}, \qquad M\mapsto (M\otimes_{W(F)}W(\overline{F}))^{\varphi=1}$$

For S a ring and φ an automorphism, a φ -module over S is a finite projective S-module M equipped with an isomorphism $\varphi^*M \cong M$ (i.e., a bijective semilinear φ -action).

Theorem (after Katz, SGA 7)

Let R be a perfect \mathbb{F}_p -algebra. The following categories are equivalent:

- étale ℤ_p-local systems on Spec(R);
- φ -modules over W(R);
- φ -modules over $W^{\dagger}(R) = \cup_{r>0} W^{r}(R)$.

For R = F a field, the functors between étale \mathbb{Z}_p -local systems (identified with $\operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_F)$) and φ -modules over W(F) are

$$V\mapsto (V\otimes_{\mathbb{Z}_p}W(\overline{F}))^{\mathcal{G}_F}, \qquad M\mapsto (M\otimes_{W(F)}W(\overline{F}))^{\varphi=1}$$

For S a ring and φ an automorphism, a φ -module over S is a finite projective S-module M equipped with an isomorphism $\varphi^*M \cong M$ (i.e., a bijective semilinear φ -action).

Theorem (after Katz, SGA 7)

Let R be a perfect \mathbb{F}_p -algebra. The following categories are equivalent:

- étale ℤ_p-local systems on Spec(R);
- φ -modules over W(R);
- φ -modules over $W^{\dagger}(R) = \cup_{r>0} W^{r}(R)$.

For R = F a field, the functors between étale \mathbb{Z}_p -local systems (identified with $\operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_F)$) and φ -modules over W(F) are

$$V\mapsto (V\otimes_{\mathbb{Z}_p}W(\overline{F}))^{\mathcal{G}_F}, \qquad M\mapsto (M\otimes_{W(F)}W(\overline{F}))^{\varphi=1}$$

For S a ring and φ an automorphism, a φ -module over S is a finite projective S-module M equipped with an isomorphism $\varphi^*M \cong M$ (i.e., a bijective semilinear φ -action).

Theorem (after Katz, SGA 7)

Let R be a perfect \mathbb{F}_p -algebra. The following categories are equivalent:

- étale ℤ_p-local systems on Spec(R);
- φ -modules over W(R);
- φ -modules over $W^{\dagger}(R) = \cup_{r>0} W^{r}(R)$.

For R = F a field, the functors between étale \mathbb{Z}_p -local systems (identified with $\operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_F)$) and φ -modules over W(F) are

$$V\mapsto (V\otimes_{\mathbb{Z}_p}W(\overline{F}))^{\mathcal{G}_F}, \qquad M\mapsto (M\otimes_{W(F)}W(\overline{F}))^{\varphi=1}$$

For S a ring and φ an automorphism, a φ -module over S is a finite projective S-module M equipped with an isomorphism $\varphi^*M \cong M$ (i.e., a bijective semilinear φ -action).

Theorem (after Katz, SGA 7)

Let R be a perfect \mathbb{F}_p -algebra. The following categories are equivalent:

- étale ℤ_p-local systems on Spec(R);
- φ -modules over W(R);
- φ -modules over $W^{\dagger}(R) = \cup_{r>0} W^{r}(R)$.

For R = F a field, the functors between étale \mathbb{Z}_p -local systems (identified with $\operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_F)$) and φ -modules over W(F) are

$$V\mapsto (V\otimes_{\mathbb{Z}_p}W(\overline{F}))^{\mathcal{G}_F}, \qquad M\mapsto (M\otimes_{W(F)}W(\overline{F}))^{\varphi=1}$$

For S a ring and φ an automorphism, a φ -module over S is a finite projective S-module M equipped with an isomorphism $\varphi^*M \cong M$ (i.e., a bijective semilinear φ -action).

Theorem (after Katz, SGA 7)

Let R be a perfect \mathbb{F}_p -algebra. The following categories are equivalent:

- étale ℤ_p-local systems on Spec(R);
- φ -modules over W(R);
- φ -modules over $W^{\dagger}(R) = \cup_{r>0} W^{r}(R)$.

For R = F a field, the functors between étale \mathbb{Z}_p -local systems (identified with $\operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_F)$) and φ -modules over W(F) are

$$V\mapsto (V\otimes_{\mathbb{Z}_p}W(\overline{F}))^{\mathcal{G}_F}, \qquad M\mapsto (M\otimes_{W(F)}W(\overline{F}))^{arphi=1}$$
Sheafified φ -modules

A φ -module over a ring sheaf $*_X$ on $X_{\text{pro\acute{e}t}}$ is a "quasicoherent finite projective"³ sheaf \mathcal{F} of $*_X$ -modules plus an isomorphism $\varphi^*\mathcal{F} \cong \mathcal{F}$.

Proposition

Quasicoherent finite projective modules over $\tilde{\mathbf{A}}_X|_Y$ or $\tilde{\mathbf{A}}_X^{\dagger}|_Y$ correspond to finite projective modules over $\tilde{\mathbf{A}}_X(Y)$ or $\tilde{\mathbf{A}}_X^{\dagger}(Y)$, respectively. Moreover, these sheaves are acyclic.

Kiran S. Kedlaya (UCSD)

³I.e., locally arises from a finite projective $*_X$ -module. Because our rings are highly nonnoetherian, rational localizations may not be flat and so coherent sheaves cannot be handled easily, but vector bundles are no problem.

Sheafified φ -modules

A φ -module over a ring sheaf $*_X$ on $X_{\text{pro\acute{e}t}}$ is a "quasicoherent finite projective"³ sheaf \mathcal{F} of $*_X$ -modules plus an isomorphism $\varphi^*\mathcal{F} \cong \mathcal{F}$.

Proposition

Quasicoherent finite projective modules over $\tilde{\mathbf{A}}_X|_Y$ or $\tilde{\mathbf{A}}_X^{\dagger}|_Y$ correspond to finite projective modules over $\tilde{\mathbf{A}}_X(Y)$ or $\tilde{\mathbf{A}}_X^{\dagger}(Y)$, respectively. Moreover, these sheaves are acyclic.

Kiran S. Kedlaya (UCSD)

³I.e., locally arises from a finite projective $*_X$ -module. Because our rings are highly nonnoetherian, rational localizations may not be flat and so coherent sheaves cannot be handled easily, but vector bundles are no problem.

Theorem

The following categories are equivalent:

- \acute{e} tale \mathbb{Z}_p -local systems on X;
- φ -modules over $\tilde{\mathbf{A}}_X$;
- φ -modules over $\tilde{\mathbf{A}}_{X}^{\dagger}$.

The functors between étale \mathbb{Z}_p -local systems and φ -modules over $\widetilde{\mathsf{A}}_X$ are

$$T \mapsto T \otimes_{\mathbb{Z}_p} \widetilde{\mathbf{A}}_X, \qquad M \mapsto M^{\varphi=1}$$

and similarly for $\tilde{\mathbf{A}}_{X}^{\dagger}$.

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Z}_p$ -local systems on X;
- φ -modules over $\tilde{\mathbf{A}}_X$;
- φ -modules over $\tilde{\mathbf{A}}_{X}^{\dagger}$.

The functors between étale \mathbb{Z}_p -local systems and φ -modules over $\widetilde{\mathsf{A}}_X$ are

$$T \mapsto T \otimes_{\mathbb{Z}_p} \widetilde{\mathbf{A}}_X, \qquad M \mapsto M^{\varphi=1}$$

and similarly for $\tilde{\mathbf{A}}_{X}^{\dagger}$.

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Z}_p$ -local systems on X;
- φ -modules over $\tilde{\mathbf{A}}_X$;
- φ -modules over $\tilde{\mathbf{A}}_{X}^{\dagger}$.

The functors between étale \mathbb{Z}_p -local systems and φ -modules over $\widetilde{\mathsf{A}}_X$ are

$$T \mapsto T \otimes_{\mathbb{Z}_p} \widetilde{\mathbf{A}}_X, \qquad M \mapsto M^{\varphi=1}$$

and similarly for $\tilde{\mathbf{A}}_{X}^{\dagger}$.

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Z}_p$ -local systems on X;
- φ -modules over $\tilde{\mathbf{A}}_X$;
- φ -modules over $\tilde{\mathbf{A}}_{X}^{\dagger}$.

The functors between étale \mathbb{Z}_p -local systems and φ -modules over $\widetilde{\mathsf{A}}_X$ are

$$T \mapsto T \otimes_{\mathbb{Z}_p} \widetilde{\mathbf{A}}_X, \qquad M \mapsto M^{\varphi=1}$$

and similarly for $\tilde{\mathbf{A}}_{X}^{\dagger}$.

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Z}_p$ -local systems on X;
- φ -modules over $\tilde{\mathbf{A}}_X$;
- φ -modules over $\tilde{\mathbf{A}}_{X}^{\dagger}$.

The functors between étale \mathbb{Z}_p -local systems and φ -modules over \tilde{A}_X are

$$T\mapsto T\otimes_{\mathbb{Z}_p} \widetilde{\mathbf{A}}_X, \qquad M\mapsto M^{\varphi=1}$$

and similarly for $\tilde{\mathbf{A}}_{X}^{\dagger}$.

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Z}_p$ -local systems on X;
- φ -modules over $\tilde{\mathbf{A}}_X$;
- φ -modules over $\tilde{\mathbf{A}}_{X}^{\dagger}$.

The functors between étale \mathbb{Z}_p -local systems and φ -modules over \tilde{A}_X are

$$T \mapsto T \otimes_{\mathbb{Z}_p} \widetilde{\mathbf{A}}_X, \qquad M \mapsto M^{\varphi=1}$$

and similarly for $\tilde{\mathbf{A}}_{X}^{\dagger}$.

Cohomology of \mathbb{Z}_p -local systems

By the étale cohomology of a local system, we will mean the ordinary cohomology on $X_{\rm pro\acute{e}t}.$

Theorem

For T an étale \mathbb{Z}_p -local system on X corresponding to a φ -module \mathcal{F} over $\tilde{\mathbf{A}}_X$ and a φ -module \mathcal{F}^{\dagger} over $\tilde{\mathbf{A}}_X^{\dagger}$, the sequences

$$0 o \mathcal{T} o \mathcal{F}^* \stackrel{arphi-1}{ o} \mathcal{F}^* o 0 \qquad (* \in \{\emptyset, \dagger\})$$

are exact.

The point is that \mathcal{F}^* is acyclic on *every* affinoid perfectoid, not just sufficiently small ones. (This recovers Herr's formula for Galois cohomology of \mathbb{Z}_p -local systems over a *p*-adic field.)

Contents

- Overview: goals of relative *p*-adic Hodge theory
- 2 Period sheaves I: Witt vectors and \mathbb{Z}_p -local systems

3 Period sheaves II: Robba rings and \mathbb{Q}_p -local systems

- 4 Sheaves on relative Fargues-Fontaine curves
- 5 The next frontier: imperfect period rings (and maybe sheaves)

Consider the following sequence of ring constructions.

- $\mathbf{A} = \varprojlim_{n \to \infty} (\mathbb{Z}/p^n \mathbb{Z})((\pi))$, a Cohen ring with residue field $\mathbb{F}_p((\overline{\pi}))$.
- $\mathbf{A}^{\dagger,r}$: elements of \mathbf{A} which converge for $p^{-r} \leq |\pi| < 1$. That is, for $x = \sum_{n \in \mathbb{Z}} x_n \pi^n \in \mathbf{A}$, we have $x \in \mathbf{A}^{\dagger,r}$ iff $\lim_{n \to -\infty} |x_n| p^{-rn} = 0$. • $\mathbf{A}^{\dagger} = \bigcup_{r > 0} \mathbf{A}^{\dagger,r}$.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

- $\mathbf{A} = \varprojlim_{n \to \infty} (\mathbb{Z}/p^n \mathbb{Z})((\pi))$, a Cohen ring with residue field $\mathbb{F}_p((\overline{\pi}))$.
- A^{†,r}: elements of A which converge for p^{-r} ≤ |π| < 1. That is, for x = ∑_{n∈ℤ} x_nπⁿ ∈ A, we have x ∈ A^{†,r} iff lim_{n→-∞} |x_n|p^{-rn} = 0.
 A[†] = ∪_{r>0}A^{†,r}.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{A}^{\dagger} = \cup_{r>0} \mathbf{A}^{\dagger, r}$$
.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \bigcap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $C = \bigcup_{r>0} C^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Consider the following sequence of ring constructions.

•
$$\mathbf{B}^* = \mathbf{A}^*[p^{-1}]$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- C^[s,r]: analytic functions on the annulus p^{-r} ≤ |π| ≤ p^{-s}. This is the completion of B^r for the max over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{|x_n|p^{-tn}}.
- C^r: analytic functions on the annulus p^{-r} ≤ |π| < 1. This is the Fréchet (i.e., not uniform) completion of B^r for {|●|_s : 0 < s ≤ r}.
- $\mathbf{C}^{\infty} = \cap_{r>0} \mathbf{C}^r$: analytic functions on the punctured disc $0 < |\pi| < 1$.
- $\mathbf{C} = \bigcup_{r>0} \mathbf{C}^r$. This is commonly called the *Robba ring* over \mathbb{Q}_p .

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on X_{proét} with the following sections.

•
$$\tilde{\mathbf{B}}^*(Y) = \tilde{\mathbf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^r(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^r(Y)$ for $\{|\bullet|_s : 0 < s \le r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^r(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathsf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathsf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathsf{C}}^{r}(Y).$$

• $\tilde{\mathsf{C}}(Y) = \cup_{r>0} \tilde{\mathsf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathsf{C}}^r(Y).$

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on $X_{\text{pro\acute{e}t}}$ with the following sections.

•
$$\tilde{\mathsf{B}}^*(Y) = \tilde{\mathsf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^r(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^r(Y)$ for $\{|\bullet|_s : 0 < s \le r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^r(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathsf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathsf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathsf{C}}^{r}(Y).$$

• $\tilde{\mathsf{C}}(Y) = \bigcup_{r>0} \tilde{\mathsf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathsf{C}}^r(Y).$

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on X_{proét} with the following sections.

•
$$\tilde{\mathbf{B}}^*(Y) = \tilde{\mathbf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^r(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^r(Y)$ for $\{|\bullet|_s : 0 < s \le r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^r(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathsf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathsf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathsf{C}}^{r}(Y).$$

• $\tilde{\mathsf{C}}(Y) = \bigcup_{r>0} \tilde{\mathsf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathsf{C}}^r(Y).$

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on $X_{\text{pro\acute{e}t}}$ with the following sections.

•
$$\tilde{\mathbf{B}}^*(Y) = \tilde{\mathbf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^r(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^r(Y)$ for $\{|\bullet|_s : 0 < s \le r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^r(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathsf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathsf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathsf{C}}^{r}(Y)$$

• $\tilde{\mathsf{C}}(Y) = \cup_{r>0} \tilde{\mathsf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathsf{C}}^r(Y).$

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on $X_{\text{pro\acute{e}t}}$ with the following sections.

•
$$\tilde{\mathbf{B}}^*(Y) = \tilde{\mathbf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^{r}(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^{r}(Y)$ for $\{|\bullet|_{s} : 0 < s \leq r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^{r}(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathsf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathsf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathsf{C}}^{r}(Y).$$

• $\tilde{\mathsf{C}}(Y) = \cup_{r>0} \tilde{\mathsf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathsf{C}}^r(Y).$

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on $X_{\text{pro\acute{e}t}}$ with the following sections.

•
$$\tilde{\mathbf{B}}^*(Y) = \tilde{\mathbf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^{r}(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^{r}(Y)$ for $\{|\bullet|_{s} : 0 < s \leq r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^{r}(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathbf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathbf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathbf{C}}^{r}(Y)$$

• $\tilde{\mathsf{C}}(Y) = \bigcup_{r>0} \tilde{\mathsf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathsf{C}}^r(Y).$

Following the previous analogy, we now define some more sheaves.

Proposition-Definition

There exist sheaves on X_{proét} with the following sections.

•
$$\tilde{\mathbf{B}}^*(Y) = \tilde{\mathbf{A}}^*(Y)$$
 for $* \in \{\emptyset; \dagger, r; \dagger\}$.

- **C**^[s,r](Y) is the completion of **B**^r(Y) for the maximum over t ∈ [s, r] (or even t = s, r) of the Gauss norm |x|_t = max_n{p⁻ⁿ|x̄_n|^r}. Note that φ : **C**^[s,r](Y) → **C**^[s/p,r/p](Y) is an isomorphism. (This is one of the rings B_{A,E,I} of the talks of Fargues and Fontaine with E = Q_p.)
- $\tilde{\mathbf{C}}^{r}(Y)$ is the Fréchet completion of $\tilde{\mathbf{B}}^{r}(Y)$ for $\{|\bullet|_{s} : 0 < s \leq r\}$. Similarly, $\varphi : \tilde{\mathbf{C}}^{r}(Y) \to \tilde{\mathbf{C}}^{r/p}(Y)$ is an isomorphism.

•
$$\tilde{\mathbf{C}}^{\infty}(Y) = \bigcap_{r>0} \tilde{\mathbf{C}}^{r}(Y) = \varprojlim_{r \to 0^{+}} \tilde{\mathbf{C}}^{r}(Y)$$

• $\tilde{\mathbf{C}}(Y) = \cup_{r>0} \tilde{\mathbf{C}}^r(Y) = \varinjlim_{r \to 0^+} \tilde{\mathbf{C}}^r(Y).$

φ -modules over $\tilde{\mathbf{C}}_X$

A φ -module over $\tilde{\mathbf{C}}_X$ is *étale* at $x \in X$ if adic-locally around x it arises by base extension from a φ -module over $\tilde{\mathbf{A}}_X^{\dagger}$.

Theorem

The étale condition is **pointwise**: it suffices to check it after pullback to the one-point space x.

Theorem

The **slope polygon** (to be defined later) of any φ -module is a lower semicontinuous function on X (with locally constant endpoints). If X arose from a Berkovich space, this is also true for Berkovich's topology (i.e., on the maximal Hausdorff quotient of X).

φ -modules over $\tilde{\mathbf{C}}_X$

A φ -module over $\tilde{\mathbf{C}}_X$ is *étale* at $x \in X$ if adic-locally around x it arises by base extension from a φ -module over $\tilde{\mathbf{A}}_X^{\dagger}$.

Theorem

The étale condition is **pointwise**: it suffices to check it after pullback to the one-point space x.

Theorem

The **slope polygon** (to be defined later) of any φ -module is a lower semicontinuous function on X (with locally constant endpoints). If X arose from a Berkovich space, this is also true for Berkovich's topology (i.e., on the maximal Hausdorff quotient of X).

φ -modules over $\tilde{\mathbf{C}}_X$

A φ -module over $\tilde{\mathbf{C}}_X$ is *étale* at $x \in X$ if adic-locally around x it arises by base extension from a φ -module over $\tilde{\mathbf{A}}_X^{\dagger}$.

Theorem

The étale condition is **pointwise**: it suffices to check it after pullback to the one-point space x.

Theorem

The **slope polygon** (to be defined later) of any φ -module is a lower semicontinuous function on X (with locally constant endpoints). If X arose from a Berkovich space, this is also true for Berkovich's topology (i.e., on the maximal Hausdorff quotient of X).

Theorem

The following categories are equivalent:

- \acute{e} tale \mathbb{Q}_p -local systems on X;
- $\acute{e}tale \varphi$ -modules over \widetilde{C}_X .
- étale φ -modules over $\tilde{\mathbf{C}}_X^{\infty}$.

Also, for V an étale \mathbb{Q}_p -local system on X corresponding to a φ -module \mathcal{F} over $\tilde{\mathbf{C}}_X^*$, for $* \in \{\emptyset, \infty\}$, the sequence

$$0 \to V \to \mathcal{F} \stackrel{\varphi-1}{\to} \mathcal{F} \to 0$$

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Q}_p$ -local systems on X;
- $\acute{e}tale \varphi$ -modules over \widetilde{C}_X .
- étale φ -modules over $\tilde{\mathbf{C}}_X^{\infty}$.

Also, for V an étale \mathbb{Q}_p -local system on X corresponding to a φ -module \mathcal{F} over $\tilde{\mathbf{C}}_X^*$, for $* \in \{\emptyset, \infty\}$, the sequence

$$0 \to V \to \mathcal{F} \stackrel{\varphi-1}{\to} \mathcal{F} \to 0$$

Theorem

The following categories are equivalent:

- étale \mathbb{Q}_p -local systems on X;
- étale φ -modules over $\tilde{\mathbf{C}}_X$.
- étale φ -modules over $\tilde{\mathbf{C}}_X^{\infty}$.

Also, for V an étale \mathbb{Q}_p -local system on X corresponding to a φ -module \mathcal{F} over $\tilde{\mathbf{C}}_X^*$, for $* \in \{\emptyset, \infty\}$, the sequence

$$0 \to V \to \mathcal{F} \stackrel{\varphi-1}{\to} \mathcal{F} \to 0$$

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Q}_p$ -local systems on X;
- étale φ -modules over $\tilde{\mathbf{C}}_X$.
- étale φ -modules over $\tilde{\mathbf{C}}_{X}^{\infty}$.

Also, for V an étale \mathbb{Q}_p -local system on X corresponding to a φ -module \mathcal{F} over $\tilde{\mathbf{C}}_X^*$, for $* \in \{\emptyset, \infty\}$, the sequence

$$0 \to V \to \mathcal{F} \stackrel{\varphi-1}{\to} \mathcal{F} \to 0$$

Theorem

The following categories are equivalent:

- $\acute{e}tale \mathbb{Q}_p$ -local systems on X;
- étale φ -modules over $\tilde{\mathbf{C}}_X$.
- étale φ -modules over $\tilde{\mathbf{C}}_{X}^{\infty}$.

Also, for V an étale \mathbb{Q}_p -local system on X corresponding to a φ -module \mathcal{F} over $\tilde{\mathbf{C}}_X^*$, for $* \in \{\emptyset, \infty\}$, the sequence

$$0 o V o \mathcal{F} \stackrel{\varphi-1}{ o} \mathcal{F} o 0$$

Future attractions: removing the puncture

- One can also define sheaves $\tilde{\mathbf{A}}_X^+, \tilde{\mathbf{B}}_X^+, \tilde{\mathbf{C}}_X^+$ where $\tilde{\mathbf{A}}_X^+(Y) = W(\overline{\mathcal{O}}(Y)^+)$. This is analogous to taking the whole unit disc, without a puncture.
- One can define "Wach-Breuil-Kisin modules" over $\tilde{\mathbf{A}}_X^+$ where the action of φ is not bijective, but has controlled kernel and cokernel. These give rise to what we should call *crystalline* φ -modules over $\tilde{\mathbf{C}}_X$.

But beware: this construction depends heavily on the + subrings!

Future attractions: removing the puncture

- One can also define sheaves $\tilde{\mathbf{A}}_X^+, \tilde{\mathbf{B}}_X^+, \tilde{\mathbf{C}}_X^+$ where $\tilde{\mathbf{A}}_X^+(Y) = W(\overline{\mathcal{O}}(Y)^+)$. This is analogous to taking the whole unit disc, without a puncture.
- One can define "Wach-Breuil-Kisin modules" over $\tilde{\mathbf{A}}_X^+$ where the action of φ is not bijective, but has controlled kernel and cokernel. These give rise to what we should call *crystalline* φ -modules over $\tilde{\mathbf{C}}_X$.

But beware: this construction depends heavily on the + subrings!
Future attractions: removing the puncture

- One can also define sheaves $\tilde{\mathbf{A}}_X^+, \tilde{\mathbf{B}}_X^+, \tilde{\mathbf{C}}_X^+$ where $\tilde{\mathbf{A}}_X^+(Y) = W(\overline{\mathcal{O}}(Y)^+)$. This is analogous to taking the whole unit disc, without a puncture.
- One can define "Wach-Breuil-Kisin modules" over $\tilde{\mathbf{A}}_X^+$ where the action of φ is not bijective, but has controlled kernel and cokernel. These give rise to what we should call *crystalline* φ -modules over $\tilde{\mathbf{C}}_X$.

But beware: this construction depends heavily on the + subrings!

Contents

- Overview: goals of relative *p*-adic Hodge theory
- 2 Period sheaves I: Witt vectors and \mathbb{Z}_p -local systems
- 3) Period sheaves II: Robba rings and \mathbb{Q}_p -local systems
- 4 Sheaves on relative Fargues-Fontaine curves
 - 5 The next frontier: imperfect period rings (and maybe sheaves)

Disclaimer

- In this section, we take X to be perfectoid (over \mathbb{Q}_p), but not necessarily over a perfectoid field. Now Y is an arbitrary affinoid perfectoid subspace of X (since $X_{\text{pro\acute{e}t}}$ is tricky).
- The relative curve we consider is the one from the lecture of Fargues, but for this exposition we only take $E = \mathbb{Q}_p$ and q = p.

Disclaimer

- In this section, we take X to be perfectoid (over \mathbb{Q}_p), but not necessarily over a perfectoid field. Now Y is an arbitrary affinoid perfectoid subspace of X (since $X_{\text{pro\acute{e}t}}$ is tricky).
- The relative curve we consider is the one from the lecture of Fargues, but for this exposition we only take $E = \mathbb{Q}_p$ and q = p.

The construction over an affinoid perfectoid

Pick any r > 0. The relative Fargues-Fontaine curve FF_Y is obtained⁴ from the "annulus" $Spa(\tilde{\mathbf{C}}_X^{[r/p,r]}(Y))$ by glueing the "edges" $Spa(\tilde{\mathbf{C}}_X^{[r/p,r/p]}(Y))$ and $Spa(\tilde{\mathbf{C}}_X^{[r,r]}(Y))$ via φ . This is independent of r. There is also an algebraic analogue:

$$\mathsf{FF}_Y^{\mathsf{alg}} = \mathsf{Proj}(P_Y), \qquad P_Y = \bigoplus_{n=0}^{\infty} \tilde{\mathsf{C}}_X(Y)^{\varphi = p^n}.$$

Theorem

There is a natural morphism $FF_Y \rightarrow FF_Y^{alg}$ of locally ringed spaces which induces an equivalence of categories of vector bundles. Moreover, these categories are equivalent to φ -modules over \tilde{C}_Y and \tilde{C}_Y^{∞} . (Again, we don't consider coherent sheaves due to non-noetherianity.)

⁴We've omitted the second inputs into Spa for brevity.

Kiran S. Kedlaya (UCSD)

Relative *p*-adic Hodge theory

The construction over an affinoid perfectoid

Pick any r > 0. The relative Fargues-Fontaine curve FF_Y is obtained⁴ from the "annulus" $Spa(\tilde{\mathbf{C}}_X^{[r/p,r]}(Y))$ by glueing the "edges" $Spa(\tilde{\mathbf{C}}_X^{[r/p,r/p]}(Y))$ and $Spa(\tilde{\mathbf{C}}_X^{[r,r]}(Y))$ via φ . This is independent of r. There is also an algebraic analogue:

$$\mathsf{FF}_Y^{\mathsf{alg}} = \mathsf{Proj}(P_Y), \qquad P_Y = \bigoplus_{n=0}^{\infty} \tilde{\mathsf{C}}_X(Y)^{\varphi = p^n}.$$

Theorem

There is a natural morphism $FF_Y \rightarrow FF_Y^{alg}$ of locally ringed spaces which induces an equivalence of categories of vector bundles. Moreover, these categories are equivalent to φ -modules over $\tilde{\mathbf{C}}_Y$ and $\tilde{\mathbf{C}}_Y^{\infty}$. (Again, we don't consider coherent sheaves due to non-noetherianity.)

⁴We've omitted the second inputs into Spa for brevity.

Kiran S. Kedlaya (UCSD)

Relative *p*-adic Hodge theory

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field; then FF_X is the Fargues-Fontaine *adic curve* associated to K^{\flat} . The algebraic curve FF_X^{alg} is a noetherian scheme of dimension 1 with a morphism deg : $\text{Pic}(\text{FF}_X) = \text{Pic}(\text{FF}_X^{\text{alg}}) \rightarrow \mathbb{Z}$ taking $\mathcal{O}(1)$ to 1.

For any nonzero vector bundle \mathcal{F} on FF_X , set

$$\mathsf{deg}(\mathcal{F}) = \mathsf{deg}(\wedge^{\mathsf{rank}(\mathcal{F})}\mathcal{F}).$$

The *slope* of \mathcal{F} is $\mu(\mathcal{F}) = \deg(\mathcal{F}) / \operatorname{rank}(\mathcal{F})$.

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field; then FF_X is the Fargues-Fontaine *adic curve* associated to K^{\flat} . The algebraic curve FF_X^{alg} is a noetherian scheme of dimension 1 with a morphism deg : $\text{Pic}(\text{FF}_X) = \text{Pic}(\text{FF}_X^{\text{alg}}) \rightarrow \mathbb{Z}$ taking $\mathcal{O}(1)$ to 1.

For any nonzero vector bundle \mathcal{F} on FF_X , set

$$\mathsf{deg}(\mathcal{F}) = \mathsf{deg}(\wedge^{\mathsf{rank}(\mathcal{F})}\mathcal{F}).$$

The *slope* of \mathcal{F} is $\mu(\mathcal{F}) = \deg(\mathcal{F}) / \operatorname{rank}(\mathcal{F})$.

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field; then FF_X is the Fargues-Fontaine *adic curve* associated to K^{\flat} . The algebraic curve FF_X^{alg} is a noetherian scheme of dimension 1 with a morphism deg : $\text{Pic}(\text{FF}_X) = \text{Pic}(\text{FF}_X^{\text{alg}}) \rightarrow \mathbb{Z}$ taking $\mathcal{O}(1)$ to 1.

For any nonzero vector bundle \mathcal{F} on FF_X , set

$$\deg(\mathcal{F}) = \deg(\wedge^{\operatorname{rank}(\mathcal{F})}\mathcal{F}).$$

The *slope* of \mathcal{F} is $\mu(\mathcal{F}) = \deg(\mathcal{F}) / \operatorname{rank}(\mathcal{F})$.

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field; then FF_X is the Fargues-Fontaine *adic curve* associated to K^{\flat} . The algebraic curve FF_X^{alg} is a noetherian scheme of dimension 1 with a morphism deg : $\text{Pic}(\text{FF}_X) = \text{Pic}(\text{FF}_X^{\text{alg}}) \rightarrow \mathbb{Z}$ taking $\mathcal{O}(1)$ to 1.

For any nonzero vector bundle \mathcal{F} on FF_X , set

$$\mathsf{deg}(\mathcal{F}) = \mathsf{deg}(\wedge^{\mathsf{rank}(\mathcal{F})}\mathcal{F}).$$

The *slope* of \mathcal{F} is $\mu(\mathcal{F}) = \deg(\mathcal{F}) / \operatorname{rank}(\mathcal{F})$.

Slopes over a perfectoid field (contd.)

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field.

Theorem (K, Fargues-Fontaine, et al.)

If K is algebraically closed, then every vector bundle on FF_X splits as a direct sum $\bigoplus_{i=1}^n \mathcal{O}(r_i/s_i)$ for some $r_i/s_i \in \mathbb{Q}$. (Here $\mathcal{O}(r_i/s_i)$ is the pushforward of $\mathcal{O}(r_i)$ along the finite étale map from the curve with $q = p^{s_i}$.)

Theorem

A φ -module over \tilde{C}_X is étale iff the corresponding vector bundle on FF_X is semistable of degree 0.

Theorem

The tensor product of two semistable vector bundles on FF_X is again semistable.

Kiran S. Kedlaya (UCSD)

Slopes over a perfectoid field (contd.)

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field.

Theorem (K, Fargues-Fontaine, et al.)

If K is algebraically closed, then every vector bundle on FF_X splits as a direct sum $\bigoplus_{i=1}^n \mathcal{O}(r_i/s_i)$ for some $r_i/s_i \in \mathbb{Q}$. (Here $\mathcal{O}(r_i/s_i)$ is the pushforward of $\mathcal{O}(r_i)$ along the finite étale map from the curve with $q = p^{s_i}$.)

Theorem

A φ -module over $\tilde{\mathbf{C}}_X$ is étale iff the corresponding vector bundle on FF_X is semistable of degree 0.

Theorem

The tensor product of two semistable vector bundles on FF_X is again semistable.

Kiran S. Kedlaya (UCSD)

Slopes over a perfectoid field (contd.)

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field.

Theorem (K, Fargues-Fontaine, et al.)

If K is algebraically closed, then every vector bundle on FF_X splits as a direct sum $\bigoplus_{i=1}^n \mathcal{O}(r_i/s_i)$ for some $r_i/s_i \in \mathbb{Q}$. (Here $\mathcal{O}(r_i/s_i)$ is the pushforward of $\mathcal{O}(r_i)$ along the finite étale map from the curve with $q = p^{s_i}$.)

Theorem

A φ -module over $\tilde{\mathbf{C}}_X$ is étale iff the corresponding vector bundle on FF_X is semistable of degree 0.

Theorem

The tensor product of two semistable vector bundles on FF_X is again semistable.

Kiran S. Kedlaya (UCSD)

Slope filtrations over a perfectoid field

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field. Then every vector bundle \mathcal{F} on FF_X admits a unique *Harder-Narasimhan filtration*

$$0 = \mathcal{F}_0 \subset \cdots \subset \mathcal{F}_m = \mathcal{F}$$

such that each $\mathcal{F}_i/\mathcal{F}_{i-1}$ is a nonzero vector bundle which is semistable of slope μ_i and $\mu_1 > \cdots > \mu_m$.

The *slope polygon* of \mathcal{F} is the Newton polygon having slope μ_i with multiplicity rank $(\mathcal{F}_i/\mathcal{F}_{i-1})$. This is flat iff \mathcal{F} is semistable.

Slope filtrations over a perfectoid field

Suppose $X = \text{Spa}(K, K^+)$ for K a perfectoid field. Then every vector bundle \mathcal{F} on FF_X admits a unique *Harder-Narasimhan filtration*

$$0 = \mathcal{F}_0 \subset \cdots \subset \mathcal{F}_m = \mathcal{F}$$

such that each $\mathcal{F}_i/\mathcal{F}_{i-1}$ is a nonzero vector bundle which is semistable of slope μ_i and $\mu_1 > \cdots > \mu_m$.

The *slope polygon* of \mathcal{F} is the Newton polygon having slope μ_i with multiplicity rank $(\mathcal{F}_i/\mathcal{F}_{i-1})$. This is flat iff \mathcal{F} is semistable.

For general X, we may glue the adic (but not the algebraic) construction.

Theorem

For X perfectoid, the spaces FF_Y glue to give an adic space FF_X over \mathbb{Q}_p which is **preperfectoid** (its base extension from \mathbb{Q}_p to any perfectoid field is perfectoid). The vector bundles on FF_X correspond to φ -modules over $\tilde{\mathbf{C}}_X$. Everything is functorial in X (and so far even in X^{\flat}).

In a certain sense, the space FF_X is a family of Fargues-Fontaine curves.

Theorem

For general X, we may glue the adic (but not the algebraic) construction.

Theorem

For X perfectoid, the spaces FF_Y glue to give an adic space FF_X over \mathbb{Q}_p which is **preperfectoid** (its base extension from \mathbb{Q}_p to any perfectoid field is perfectoid). The vector bundles on FF_X correspond to φ -modules over $\tilde{\mathbf{C}}_X$. Everything is functorial in X (and so far even in X^{\flat}).

In a certain sense, the space FF_X is a family of Fargues-Fontaine curves.

Theorem

For general X, we may glue the adic (but not the algebraic) construction.

Theorem

For X perfectoid, the spaces FF_Y glue to give an adic space FF_X over \mathbb{Q}_p which is **preperfectoid** (its base extension from \mathbb{Q}_p to any perfectoid field is perfectoid). The vector bundles on FF_X correspond to φ -modules over $\tilde{\mathbf{C}}_X$. Everything is functorial in X (and so far even in X^{\flat}).

In a certain sense, the space FF_X is a family of Fargues-Fontaine curves.

Theorem

For general X, we may glue the adic (but not the algebraic) construction.

Theorem

For X perfectoid, the spaces FF_Y glue to give an adic space FF_X over \mathbb{Q}_p which is **preperfectoid** (its base extension from \mathbb{Q}_p to any perfectoid field is perfectoid). The vector bundles on FF_X correspond to φ -modules over $\tilde{\mathbf{C}}_X$. Everything is functorial in X (and so far even in X^{\flat}).

In a certain sense, the space FF_X is a family of Fargues-Fontaine curves.

Theorem

Local systems revisited

Combining previous statements, we get the following.

Theorem

For X perfectoid, étale \mathbb{Q}_p -local systems on X form a category equivalent to vector bundles on FF_X which are fiberwise semistable of degree 0. Moreover, the étale cohomology of a local system coincides with the coherent cohomology of the corresponding vector bundle.

Theorem

The slope polygon of a vector bundle on FF_X is upper semicontinuous as a function on |X| (with locally constant endpoints). This remains true on the maximal Hausdorff quotient of |X| provided that X is **taut** (closures of quasicompact opens are quasicompact).

Local systems revisited

Combining previous statements, we get the following.

Theorem

For X perfectoid, étale \mathbb{Q}_p -local systems on X form a category equivalent to vector bundles on FF_X which are fiberwise semistable of degree 0. Moreover, the étale cohomology of a local system coincides with the coherent cohomology of the corresponding vector bundle.

Theorem

The slope polygon of a vector bundle on FF_X is upper semicontinuous as a function on |X| (with locally constant endpoints). This remains true on the maximal Hausdorff quotient of |X| provided that X is **taut** (closures of quasicompact opens are quasicompact).

Local systems revisited

Combining previous statements, we get the following.

Theorem

For X perfectoid, étale \mathbb{Q}_p -local systems on X form a category equivalent to vector bundles on FF_X which are fiberwise semistable of degree 0. Moreover, the étale cohomology of a local system coincides with the coherent cohomology of the corresponding vector bundle.

Theorem

The slope polygon of a vector bundle on FF_X is upper semicontinuous as a function on |X| (with locally constant endpoints). This remains true on the maximal Hausdorff quotient of |X| provided that X is **taut** (closures of quasicompact opens are quasicompact).

A vector bundle \mathcal{F} on FF_X is **ample** if for any vector bundle \mathcal{G} on FF_Y , $\mathcal{G} \otimes \mathcal{F}^{\otimes n}$ is generated by global sections for $n \gg 0$.

Theorem

 $\mathcal{O}(1)$ is ample. Consequently, to check ampleness we need only consider $\mathcal{G} = \mathcal{O}(d)$ for $d \in \mathbb{Z}$ (over all Y; the powers of \mathcal{F} need not be uniform).

Theorem

$$\mathcal{F}$$
 is ample iff for all Y and d, $H^1(FF_Y, \mathcal{F}^{\otimes n}(d)) = 0$ for $n \gg 0$.

Theorem

A vector bundle \mathcal{F} on FF_X is **ample** if for any vector bundle \mathcal{G} on FF_Y , $\mathcal{G} \otimes \mathcal{F}^{\otimes n}$ is generated by global sections for $n \gg 0$.

Theorem

 $\mathcal{O}(1)$ is ample. Consequently, to check ampleness we need only consider $\mathcal{G} = \mathcal{O}(d)$ for $d \in \mathbb{Z}$ (over all Y; the powers of \mathcal{F} need not be uniform).

Theorem

$$\mathcal{F}$$
 is ample iff for all Y and d, $H^1(FF_Y, \mathcal{F}^{\otimes n}(d)) = 0$ for $n \gg 0$.

Theorem

A vector bundle \mathcal{F} on FF_X is **ample** if for any vector bundle \mathcal{G} on FF_Y , $\mathcal{G} \otimes \mathcal{F}^{\otimes n}$ is generated by global sections for $n \gg 0$.

Theorem

 $\mathcal{O}(1)$ is ample. Consequently, to check ampleness we need only consider $\mathcal{G} = \mathcal{O}(d)$ for $d \in \mathbb{Z}$ (over all Y; the powers of \mathcal{F} need not be uniform).

Theorem

$$\mathcal{F}$$
 is ample iff for all Y and d, $H^1(FF_Y, \mathcal{F}^{\otimes n}(d)) = 0$ for $n \gg 0$.

Theorem

A vector bundle \mathcal{F} on FF_X is **ample** if for any vector bundle \mathcal{G} on FF_Y , $\mathcal{G} \otimes \mathcal{F}^{\otimes n}$ is generated by global sections for $n \gg 0$.

Theorem

 $\mathcal{O}(1)$ is ample. Consequently, to check ampleness we need only consider $\mathcal{G} = \mathcal{O}(d)$ for $d \in \mathbb{Z}$ (over all Y; the powers of \mathcal{F} need not be uniform).

Theorem

$$\mathcal{F}$$
 is ample iff for all Y and d, $H^1(FF_Y, \mathcal{F}^{\otimes n}(d)) = 0$ for $n \gg 0$.

Theorem

A distinguished section

So far, FF_X has been defined entirely in terms of X^{\flat} (as in the lecture of Fargues). But it does admit some structures that depend on X:

- a distinguished ample line bundle \mathcal{L}_X of rank 1 and degree 1;
- a distinguished section t_X of \mathcal{L}_X .

The zero locus of t_X is the image of a section $X \to FF_X$ of the map $|FF_X| \to |X|$. Unlike the fiber map, though, this is a map of adic spaces.

It should be possible to define sheaves $\bm{B}_{\rm dR}, \bm{B}_{\rm crys}, \bm{B}_{\rm st};$ for instance,

$$\mathbf{B}_{\mathrm{dR},X} = \widehat{\mathcal{O}_{\mathsf{FF}_X}[t_X^{-1}]}$$

where the hat denotes (t_X) -adic completion.

A distinguished section

So far, FF_X has been defined entirely in terms of X^{\flat} (as in the lecture of Fargues). But it does admit some structures that depend on X:

- a distinguished ample line bundle \mathcal{L}_X of rank 1 and degree 1;
- a distinguished section t_X of \mathcal{L}_X .

The zero locus of t_X is the image of a section $X \to FF_X$ of the map $|FF_X| \to |X|$. Unlike the fiber map, though, this is a map of adic spaces.

It should be possible to define sheaves $\bm{B}_{\mathrm{dR}}, \bm{B}_{\mathrm{crys}}, \bm{B}_{\mathrm{st}}$; for instance,

$$\mathbf{B}_{\mathrm{dR},X} = \widehat{\mathcal{O}_{\mathsf{FF}_X}[t_X^{-1}]}$$

where the hat denotes (t_X) -adic completion.

Contents

- Overview: goals of relative *p*-adic Hodge theory
- 2 Period sheaves I: Witt vectors and \mathbb{Z}_p -local systems
- 3 Period sheaves II: Robba rings and \mathbb{Q}_p -local systems
- 4 Sheaves on relative Fargues-Fontaine curves

5 The next frontier: imperfect period rings (and maybe sheaves)

Let K be a p-adic field. Let K_{∞} be a strictly arithmetically profinite (i.e., "sufficiently infinitely ramified") algebraic extension of K. The Fontaine-Wintenberger *field of norms* is a local field L of characteristic p such that $\widehat{K_{\infty}}^{\flat} = \widehat{L^{\text{perf}}}$. In particular, L is *imperfect*.

Example: for
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, we get $L = \mathbb{F}_p((\overline{\pi}))$.

Tilting does not find L inside L^{perf} . The problem is that one must remember not just $\widehat{K_{\infty}}$ but also K_{∞} , and especially the tower of extensions leading to K_{∞} via the ramification filtration.

Let K be a p-adic field. Let K_{∞} be a strictly arithmetically profinite (i.e., "sufficiently infinitely ramified") algebraic extension of K. The Fontaine-Wintenberger *field of norms* is a local field L of characteristic p such that $\widehat{K_{\infty}}^{\flat} = \widehat{L^{\text{perf}}}$. In particular, L is *imperfect*.

Example: for
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, we get $L = \mathbb{F}_p((\overline{\pi}))$.

Tilting does not find L inside L^{perf} . The problem is that one must remember not just $\widehat{K_{\infty}}$ but also K_{∞} , and especially the tower of extensions leading to K_{∞} via the ramification filtration.

Let K be a p-adic field. Let K_{∞} be a strictly arithmetically profinite (i.e., "sufficiently infinitely ramified") algebraic extension of K. The Fontaine-Wintenberger *field of norms* is a local field L of characteristic p such that $\widehat{K_{\infty}}^{\flat} = \widehat{L^{\text{perf}}}$. In particular, L is *imperfect*.

Example: for
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, we get $L = \mathbb{F}_p((\overline{\pi}))$.

Tilting does not find L inside L^{perf} . The problem is that one must remember not just $\widehat{K_{\infty}}$ but also K_{∞} , and especially the tower of extensions leading to K_{∞} via the ramification filtration.

Let K be a p-adic field. Let K_{∞} be a strictly arithmetically profinite (i.e., "sufficiently infinitely ramified") algebraic extension of K. The Fontaine-Wintenberger *field of norms* is a local field L of characteristic p such that $\widehat{K_{\infty}}^{\flat} = \widehat{L^{\text{perf}}}$. In particular, L is *imperfect*.

Example: for
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, we get $L = \mathbb{F}_p((\overline{\pi}))$.

Tilting does not find L inside L^{perf} . The problem is that one must remember not just $\widehat{K_{\infty}}$ but also K_{∞} , and especially the tower of extensions leading to K_{∞} via the ramification filtration.

The example of (φ, Γ) -modules

For
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, map $\mathbf{A} = \varprojlim_{n \to \infty}(\mathbb{Z}/p^n\mathbb{Z})((\pi))$ into $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_{\widehat{K_{\infty}}}$ by taking $1 + \pi$ to $[1 + \overline{\pi}]$. Then Γ lifts to \mathbf{A} and \mathbf{A}^{\dagger} .

Theorem (Cherbonnier-Colmez)

The categories of (φ, Γ) -modules (φ -modules with compatible Γ -action) over $\mathbf{A}, \mathbf{A}^{\dagger}, \tilde{\mathbf{A}}, \tilde{\mathbf{A}}^{\dagger}$ are all equivalent.

Consequently, elements of $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ define φ -modules over the Robba ring **C**. By taking sections over annuli, we get *locally analytic* representations of Γ ; this doesn't happen using φ -modules over $\tilde{\mathbf{C}}$.

The example of (φ, Γ) -modules

For
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, map $\mathbf{A} = \varprojlim_{n \to \infty}(\mathbb{Z}/p^n\mathbb{Z})((\pi))$ into
 $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_{\widehat{K_{\infty}}}$ by taking $1 + \pi$ to $[1 + \overline{\pi}]$. Then Γ lifts to \mathbf{A} and \mathbf{A}^{\dagger} .

Theorem (Cherbonnier-Colmez)

The categories of (φ, Γ) -modules (φ -modules with compatible Γ -action) over $\mathbf{A}, \mathbf{A}^{\dagger}, \tilde{\mathbf{A}}, \tilde{\mathbf{A}}^{\dagger}$ are all equivalent.

Consequently, elements of $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ define φ -modules over the Robba ring **C**. By taking sections over annuli, we get *locally analytic* representations of Γ ; this doesn't happen using φ -modules over \widetilde{C} .

The example of (φ, Γ) -modules

For
$$K = \mathbb{Q}_p$$
, $K_{\infty} = \mathbb{Q}_p(\mu_{p^{\infty}})$, map $\mathbf{A} = \varprojlim_{n \to \infty}(\mathbb{Z}/p^n\mathbb{Z})((\pi))$ into
 $\tilde{\mathbf{A}} = \tilde{\mathbf{A}}_{\widehat{K_{\infty}}}$ by taking $1 + \pi$ to $[1 + \overline{\pi}]$. Then Γ lifts to \mathbf{A} and \mathbf{A}^{\dagger} .

Theorem (Cherbonnier-Colmez)

The categories of (φ, Γ) -modules (φ -modules with compatible Γ -action) over $\mathbf{A}, \mathbf{A}^{\dagger}, \tilde{\mathbf{A}}, \tilde{\mathbf{A}}^{\dagger}$ are all equivalent.

Consequently, elements of $\operatorname{Rep}_{\mathbb{Q}_p}(G_K)$ define φ -modules over the Robba ring **C**. By taking sections over annuli, we get *locally analytic* representations of Γ ; this doesn't happen using φ -modules over \widetilde{C} .
One may hope for an analogue of Cherbonnier-Colmez for other perfectoid towers, i.e., descent of φ -modules with descent data from $\tilde{\mathbf{A}}$ to some appropriate imperfect subring \mathbf{A} . This would perhaps give additional locally analytic representations sought by Berger-Colmez. (One may also want to descent from $\tilde{\mathbf{C}}$ to a suitable \mathbf{C} .)

One well-understood case are towers arising from the standard perfectoid tower over \mathbb{P}^n (Andreatta-Brinon); these towers are used in the *p*-adic comparison isomorphism (see Nizioł's lectures).

Important question: what about the Lubin-Tate tower (see Weinstein's lectures)? And (how) is this relevant to *p*-adic Langlands?

One may hope for an analogue of Cherbonnier-Colmez for other perfectoid towers, i.e., descent of φ -modules with descent data from \tilde{A} to some appropriate imperfect subring A. This would perhaps give additional locally analytic representations sought by Berger-Colmez. (One may also want to descent from \tilde{C} to a suitable C.)

One well-understood case are towers arising from the standard perfectoid tower over \mathbb{P}^n (Andreatta-Brinon); these towers are used in the *p*-adic comparison isomorphism (see Nizioł's lectures).

Important question: what about the Lubin-Tate tower (see Weinstein's lectures)? And (how) is this relevant to *p*-adic Langlands?

One may hope for an analogue of Cherbonnier-Colmez for other perfectoid towers, i.e., descent of φ -modules with descent data from \tilde{A} to some appropriate imperfect subring A. This would perhaps give additional locally analytic representations sought by Berger-Colmez. (One may also want to descent from \tilde{C} to a suitable C.)

One well-understood case are towers arising from the standard perfectoid tower over \mathbb{P}^n (Andreatta-Brinon); these towers are used in the *p*-adic comparison isomorphism (see Nizioł's lectures).

Important question: what about the Lubin-Tate tower (see Weinstein's lectures)? And (how) is this relevant to *p*-adic Langlands?

One may hope for an analogue of Cherbonnier-Colmez for other perfectoid towers, i.e., descent of φ -modules with descent data from \tilde{A} to some appropriate imperfect subring A. This would perhaps give additional locally analytic representations sought by Berger-Colmez. (One may also want to descent from \tilde{C} to a suitable C.)

One well-understood case are towers arising from the standard perfectoid tower over \mathbb{P}^n (Andreatta-Brinon); these towers are used in the *p*-adic comparison isomorphism (see Nizioł's lectures).

Important question: what about the Lubin-Tate tower (see Weinstein's lectures)? And (how) is this relevant to *p*-adic Langlands?