MSRI Hot Topics Workshop: Perfectoid Spaces and their Applications

p-adic Hodge Theory for Rigid Spaces I -Wiesława Nizioł 9:00am February 20, 2014

Notes taken by Dan Collins (djcollin@math.princeton.edu)

Keywords: Étale cohomology, Adic spaces, Finiteness theorem, Comparison theorem

Summary: The aim of this lecture is to describe the proof of an important theorem about finiteness of étale cohomology modulo p for adic spaces over certain perfectoid fields, and a comparison theorem for this cohomology. The main technique here is to use a version of the Artin-Schreier sequence that is suitable for the sheaves we are dealing with. This reduces to needing to prove that a certain étale cohomology group is almost finitely generated, which is done by an analysis involving group cohomology and some spectral sequences.

Theorem 1. Let C/\mathbb{Q}_p be an algebraically closed complete extension, $X \to \operatorname{Spa}(C, \mathcal{O}_C)$ a proper smooth adic space, and let \mathcal{L} be a \mathbb{F}_p -local system on X. Then:

- 1. $H^i(X_{\text{ét}}, \mathcal{L})$ is a finite-dimensional \mathbb{F}_p -vector space for all $i \geq 0$ and moreover vanishes for $i > d = 2 \dim X$.
- 2. There is an almost isomorphism of \mathcal{O}_C -modules between $H^*(X_{\text{\'et}}, \mathcal{L}) \otimes_{\mathbb{F}_p} \mathcal{O}_C/p$ and $H^*(X, \mathcal{L} \otimes \mathcal{O}_X^+/p)$.

This will be the main theorem that the talk is aimed at proving. Remarks: (a) There's a relative version that follows from a base change theorem and (more general version of) the main theorem.

(b) The main theorem implies a B_{dR} -comparison theorem.

Proof: We will proceed by proving the almost isomorphism and finitedimensionality together, then get vanishing. We will reduce to coherent cohomology via Artin-Schreier sequences, applying tilting and the pro-étale site. We recall what properties of the pro-étale site we'll use:

(1) $X_{\text{pro\acute{e}t}}$ computes étale cohomology; if $\nu : X_{\text{pro\acute{e}t}} \to X_{\acute{e}t}$ is the natural map and \mathcal{F} is a sheaf on $X_{\acute{e}t}$, then $\mathcal{F} \cong R\nu_*\nu^*\mathcal{F}$.

(2) Over a perfectoid (K, K^+) , affinoid perfectoids form a basis for the pro-étale topology.

(3) If U is an affinoid perfectoid then $H^i(U, \mathcal{O}_X^+/p)$ is almost isomorphic to 0 for i > 0. (This can be reduced to proving $H^i(W_{\text{ét}}, \mathcal{O}_X^+/p)$ is almost zero for W an affinoid perfectoid space, and this reduces to showing $H^i(W, \mathcal{O}_X^+/p)$ is almost zero. Note that an "affinoid perfectoid" is something in the pro-étale site and an "affinoid perfectoid space" is actually a space!).

(3') A twisted version of (3): If \mathcal{L} is a \mathbb{F}_p -local system then $H^i(U, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is almost zero for i > 0. (When we pass from our pro-étale object U to an actual adic space $\widehat{U} = \operatorname{Spa}(S, S^+)$, we have $H^0(U, \mathcal{L} \otimes \mathcal{O}_X^+/p) = M(U)$ for M(U) an almost finitely generated projective S^+/p -module, and compatibility with base change).

Want to use the *classical* Artin-Schreier sequence on $X_{\text{proét}}$,

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \mathcal{O}_X^+ / p \xrightarrow{\varphi - 1} \mathcal{L} \otimes \mathcal{O}_X^+ / p \longrightarrow 0$$

This is exact; follows from looking locally; \mathcal{L}_U is trivial for $U \in X_{\text{pro\acute{e}t}}$ affinoid perfectoid, and by tilting it's enough to show surjectivity, which we'll do by reduction to characteristic p. So take U, the associated space \widehat{U} , and its tilt \widehat{U}^{\flat} , and pick $\pi \in \mathcal{O}_{\widehat{U}^{\flat}}^{+}$ with $\pi^{\sharp} = p$. Now have $\varphi - 1 : \mathcal{O}_{U}^{+}/p \to \mathcal{O}_{U}^{+}/p$ étale, and tilt this to $\mathcal{O}_{U^{\flat}}^{+}/p \to \mathcal{O}_{U^{\flat}}^{+}/p$. Pass from the tilted site back by using $\widehat{U}_{\acute{e}t}^{\flat} \cong \widehat{U}_{\acute{e}t}^{\flat}$. Get:

$$\cdots \longrightarrow H^{i}(X_{\text{\'et}}, \mathcal{L}) \longrightarrow H^{i}(X_{\text{\'et}}, \mathcal{L} \otimes \mathcal{O}_{X}^{+}/p) \xrightarrow{\varphi - 1} H^{i}(X_{\text{\'et}}, \mathcal{L} \otimes \mathcal{O}_{X}^{+}/p) \longrightarrow \cdots$$

Now, $H^i(X_{\text{ét}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is almost isomorphic to $(\mathcal{O}_C/p)^r$ for some r; this follows from the claim (to be proven later) that $H^i(X_{\text{ét}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is an almost-finitely generated \mathcal{O}_C/p -module, and using the Frobenius. So, we get a diagram

If we have vertical almost isomorphisms, and if there's a finiteness or rigidity statement we can get a map $H^i(X_{\text{\acute{e}t}}, \mathcal{L}) \cong \mathbb{F}_p^r$ that's an actual isomorphism. So, we want to modify our setup and use a slightly different Artin-Schreier sequence (which will kill the "almost" in the isomorphisms above). We take the sequence

$$0 \longrightarrow \mathcal{L} \longrightarrow \mathcal{L} \otimes \widehat{\mathcal{O}}_{X^{\flat}} \xrightarrow{\varphi - 1} \mathcal{L} \otimes \widehat{\mathcal{O}}_{X^{\flat}} \longrightarrow 0$$

Here $\widehat{\mathcal{O}}_{X^{\flat}}^+$ is the tilt $\varprojlim \mathcal{O}_X^+/p$ and $\widehat{\mathcal{O}}_{X^{\flat}} = \widehat{\mathcal{O}}_{X^{\flat}}^+ \otimes_{\mathcal{O}_{C^{\flat}}} C^{\flat}$. Get a long exact sequence

$$\cdots \longrightarrow H^{i}(X_{\text{\'et}}, \mathcal{L}) \longrightarrow H^{i}(X_{\text{\'et}}, \mathcal{L} \otimes \widehat{\mathcal{O}}_{X^{\flat}}) \xrightarrow{\varphi - 1} H^{i}(X_{\text{\'et}}, \mathcal{L} \otimes \widehat{\mathcal{O}}_{X^{\flat}}) \longrightarrow \cdots$$

which has (actual, not almost) vertical isomorphisms to

This proves the finite-dimensionality statement of part (1) of the theorem as well as part (2) of the theorem, modulo the claim that $H^i(X_{\text{ét}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is almost-finitely-generated. We now want to prove the vanishing part of (1). Suffices to show that $H^i(X_{\text{\acute{et}}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ vanishes for j > d. Look at $\varepsilon : X_{\text{\acute{et}}} \to X_{\text{an}}$. Since the dimension of X_{an} is d it suffices to show that

$$R^j \varepsilon_* (\mathcal{L} \otimes \mathcal{O}_X^+/p)$$

is almost zero for j > d. Can make this computation locally, so can assume without loss of generality that X is affinoid, smooth, and has "good coordinates" (i.e. a map $X \to \mathbb{T}^d$ which is a composition of rational embeddings and finite étale maps). Now, $\mathbb{T} = \mathbb{T}^d$ is $\operatorname{Spa}(\mathbb{C}\langle T_i^{\pm 1}\rangle, \mathcal{O}_C\langle T_i^{\pm 1}\rangle)$. Take the perfection

$$\widetilde{\mathbb{T}} = \varprojlim \mathbb{T} = \operatorname{Spa}(\mathbb{C}\langle T_i^{\pm 1/p^{\infty}} \rangle, \mathcal{O}_C \langle T_i^{\pm 1/p^{\infty}} \rangle).$$

Take $\widetilde{X} = X \times_{\mathbb{T}} \widetilde{\mathbb{T}}$, which gives a \mathbb{Z}_p^d -pro-covering of X. Now,

$$R\Gamma(X_{\text{pro\acute{e}t}}, \mathcal{L} \otimes \mathcal{O}_X^+/p) = \mathcal{C}(\widetilde{X}/X, R\Gamma(\widetilde{X}_{\text{pro\acute{e}t}}^{\cdot}, \mathcal{L} \otimes \mathcal{O}_X^+/p))$$

But

$$H^{j}(\widetilde{X}_{\text{pro\acute{e}t}}^{i/X}, \mathcal{L} \otimes \mathcal{O}_{X}^{+}/p) = H^{j}(\widetilde{X} \times \mathbb{Z}_{p}^{d(i-1)}, \mathcal{L} \otimes \mathcal{O}_{X}^{+}/p)$$
$$= \operatorname{Hom}_{\operatorname{cont}}(\mathbb{Z}_{p}^{d(i-1)}, H^{j}(\widetilde{X}, \mathcal{L} \otimes \mathcal{O}_{X}^{+}/p)),$$

where we give the last cohomology group the discrete topology. This is almost zero for j > 0, so we conclude that $H^j(X_{\text{pro\acute{e}t}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is almost isomorphic to $H^j_{\text{cont}}(\mathbb{Z}_p^d, M)$ where M is an almost-finitely-generated S^+ -module. Since \mathbb{Z}_p^d has cohomological dimension d, this continuous cohomology group vanishes for j > d, we get the desired result.

So it remains to prove the aforementioned claim. So let X be a proper smooth adic space over $\text{Spa}(K, \mathcal{O}_K)$ where K is characteristic zero and contains all *p*-power roots of unity; want to prove $H^i(X_{\text{ét}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is almost-finitelygenerated as a \mathcal{O}_K -module. Idea: mimic the proof that coherent cohomology is finitely-generated for rigid analytic spaces in this setup.

Take a "good cover" $X = \bigcup V_i$, where each V_i is affinoid with good coordinates. By properness we can find another covering $\bigcup V'_i$ with $\overline{V}'_i \subseteq V_i$. Then have spectral sequences

$$E_1^{m_1,m_2}(V) = \bigoplus_{|J|=m_1+1} H^{m_2}(V_{J,\text{\'et}}, \mathcal{L} \otimes \mathcal{O}_X^+/p) \implies H^{m_1+m_2}(X, \mathcal{L} \otimes \mathcal{O}_X^+/p)$$

 $E_1^{m_1,m_2}(V') = \bigoplus_{|J|=m_1+1} H^{m_2}(V'_{J,\text{\'et}}, \mathcal{L} \otimes \mathcal{O}_X^+/p) \implies H^{m_1+m_2}(X, \mathcal{L} \otimes \mathcal{O}_X^+/p),$

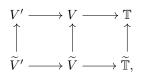
and have natural restriction maps from the first sequence to the second. So suffices to prove that the image of

 $\operatorname{Res}_{m_1,m_2}: E_1^{m_1,m_2}(V) \to E_1^{m_1,m_2}(V')$

is almost finitely generated. This gets a bit ugly...

Lemma 2. Let V be good, V' a rational subset with $\overline{V}' \subseteq V$. Then the image of $\alpha : H^i(V_{\text{\'et}}, \mathcal{L} \otimes \mathcal{O}_X^+/p) \to H^i(V'_{\text{\'et}}, \mathcal{L} \otimes \mathcal{O}_X^+/p)$ is a finitely-generated \mathcal{O}_K -module.

Proof. Taking our good coordinates and perfections we get a diagram



with $\widehat{\widetilde{V}} = \operatorname{Spa}(S, S^+)$ and $\widehat{\widetilde{V}}' = \operatorname{Spa}(S', {S'}^+)$. Step 1: Pass to group cohomology and get

$$\alpha: H^i_{\text{cont}}(\mathbb{Z}^d_p, M) \to H^i_{\text{cont}}(\mathbb{Z}^d_p, M \otimes {S'}^+/p)$$

where M is an almost finitely generated projective module over S^+/p . So can assume without loss of generality that $M = S^+/p$.

Step 2: Consider $(S_{\mathfrak{m}}, S_{\mathfrak{m}}^+)$ and $(S'_{\mathfrak{m}}, {S'}_{\mathfrak{m}}^+)$. Suffices to show that for all \mathfrak{m} , the image of

$$H^i_{\mathrm{cont}}(\mathbb{Z}^d_p, (S^+_{\mathfrak{m}} \otimes R^+)/p) \to H^i_{\mathrm{cont}}(\mathbb{Z}^d_p, ({S'}^+_{\mathfrak{m}} \otimes R^+)/p)$$

is almost finitely generated. Can do this by using the Hochschild-Serre spectral sequence and some more arguments... $\hfill\square$

and