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Summary: This talk discusses some of the automorphic constructions that
are important in Scholze’s work on torsion classes. The main tool that is in-
troduced is completed cohomology, which (when applied to Shimura varieties)
will encode information about automorphic forms at all levels in a clean way.
The idea is that, given a torsion class in the homology of a locally symmetric
space, we can find the corresponding system of Hecke eigenvalues occurring in
the completed cohomology for some Shimura variety, then use known theorems
to conclude it comes from an automorphic representation. In particular, the
speaker sketches how the classes we want can be found in the completed co-
homology for a Shimura variety via studying the boundary of the Borel-Serre
compactification.

In this talk, we will introduce some of the more automorphic aspects needed
for Scholze’s proof of the existence of Galois representations for torsion classes.
Our setup will be that G is the Zp-points of some algebraic group, and Gr is
the level pr congruence subgroup. Then, we want a tower of manifolds

→ Xr → Xr−1 → · · · → X

such that Xr → X is a torsor for G/Gr.

Examples:
(1)G = ZP , with a tower of S1’s with transition maps the p-power maps between
them.
(2) G = GL2(Zp), with tower having base the modular curve Y (N) and r-th
step is Y (Npr) (since Y (Npr)→ Y (N) is a GL2(Z/prZ)-torsor).

In this setup, we define the completed cohomology by

H̃i = lim←−
s

lim−→
r

Hi(Xr,Z/psZ).
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This limit sees both Betti numbers and torsion in cohomology in an interesting
way. Going back to the examples above:
(1) H̃0 = Zp and H̃1 = 0 (because we’re taking the inverse limit along the
multiplication-by-p maps).
(2) H̃0 = Zp[[(Z/NZ)× × Z×p ]], and H̃1 is something interesting that encodes
p-adic Langlands!

How do we relate the completed cohomology back to finite level? This is
important e.g. in the modular curve case, where cohomology in finite level
tells us about modular forms via Eichler-Shimura. We have a Hochschild-Serre
spectral sequence Eij

2 = Hi(Gr, H̃
j) =⇒ Hi+j(Xr,Zp).

So suppose you had an algebra of operators (e.g. a Hecke algebra) on your
cohomology and wanted to say something about the eigenvalues. If a system of
eigenvalues appears at finite level, the spectral sequence says it should appear
at infinite level; so it suffices to look there.

If W is a free Zp-module of finite rank with a continuous G-action, we get
compatible local systems Wr/Xr. Then we have that

Eij
2 = ExtiZp[[Gr]](W

∨, H̃j) =⇒ Hi+j(Xr,Wr).

So even if we want to work with coordinates it’s still sufficient to look just at
completed cohomology.

For the context of Scholze’s work, let G be a reductive group over Q (or over
any number field, which we can restrict scalars down to Q). Then, if Kf is the
open compact in G(Af ) (for Af the finite adeles), set

Y (Kf ) = G(Q)\G(A)/A◦∞K◦∞Kf ,

where A◦∞ is the connected component of R-points of maximal Q-split torus
in the center of G and K◦∞ the connected component of the maximal compact
subgroup of G(R).

Example: G = GL2. Then A◦∞
∼= R×>0 (as scalar matrices) and K◦∞ =

SO2(R). Then GL2(R)/A◦∞K◦∞ = GL2(R)/C× is the usual representation of
C \ R as a quotient, and this is where we get a modular curve out of Y (Kf ).

Another example: if G = GL2 over an imaginary quadratic field, then
G(R) = GL2(C), A◦∞ = R×>0 and K◦∞ = U(2). Then we get

GL2(C)/A◦∞K◦∞ = PSL2(C)/SO(3) = H3,

hyperbolic 3-space. The quotients of these by congruence subgroups are Bianchi
manifolds.

A theorem of Franke tells us thatHi(Y (Kf ),C) is computed by automorphic
forms. This is a generalization of Eichler-Shimura, and a strengthening of Hodge
theory to these non-compact manifolds. So the systems of Hecke eigenvalues
that show up here are going to come from automorphic forms; and since we can
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also compute cohomology over Z they will be algebraic integers. So one might
expect these to have Galois representations attached to them, and they do by
work of Harris-Lan-Taylor-Thorne (most recently) and so on. But cohomology
over Z might have torsion cohomology, and Scholze’s work also assigns Galois
representations to those. So in this way p-adic Hodge theory is really showing
up in the same way that classical Hodge theory does!

Now, dimY (Kf ) is classically written as 2k0 + `0 with

`0 = rank(G)− rank(A◦∞)− rank(K◦∞).

In the case where we have complex structure, `0 will be 0 and k0 will be the
complex dimension. This q0 plays the role of the middle degree (which for al-
gebraic varieties is the most important). So Hq0 is both the “first” and “last”
interesting degree of cohomology; for lower degrees the systems of Hecke eigen-
values come from lower dimensional groups, and for higher degrees they show up
from exterior powers of Hq0 . (This discussion only makes sense for cohomology
with C coefficients).

Fix a ground level Kf = KpKp. Consider the tower of Y (KpK ′p) (with
Y (KpKp) at the bottom) as K ′p varies over a sequence of compact open sub-
groups of GL2(Qp) shrinking to 1. Can then form completed cohomology H̃i,
and completed cohomology with compact supports H̃i

c. Then G(Qp) acts on
these, as does the Hecke algebra T generated by Hecke operators at primes
` - pN .

Conjecture 1 (Calegari-Emerton). H̃i = 0 for i > q0. (Completed cohomology
should strip away the “redundant information”).

One of Scholze’s results shows that this is true for a wide class of Shimura
varieties. How he proves this is by taking the tower Y (KpK ′p) and realizing its
inverse limit as a perfectoid space.

Now we talk a bit about compactifications and boundaries. Example: mod-
ular curve Y0(11) is topologically a torus with two points removed; compactify
it by adding in cylinders (equivalently circles) at those points. So boundary
becomes two circles. In general, the Borel-Serre compactification gives us a
manifold with corners.

Example: Take G = U(2, 2); choose the quadratic imaginary field F = Q(i),
look at V = F 4 with the Hermitian form Q(x, y, z, w) = xy− zw. Then U(2, 2)
is the group of symmetries of this Q. This has a two-dimensional maximal torus,
and two maximal parabolics: the Klingen parabolic (the stabilizer of an isotropy
line) and a Siegel parabolic (the stabilizer of an isotropy plane). In the Klingen
case, an isotropic line ` gives rise to a filtration 0 ⊆ ` ⊆ `⊥ ⊆ V , and on `⊥/`
you get an induced form Q of type (1,1). Can check this has Levi isomorphic to
F××U(1, 1). For the Siegel case, if W is an isotropic plane then W = W⊥ and
we get that the Levi is GL2(F ). Now, if we have our YG = YG(Kf ) sitting inside
the Borel-Serre compactification Y G with boundary ∂, then ∂ breaks up into
two pieces, one for each parabolic P . Each of these pieces ∂P is a nil bundle over

3



YM where M is a Levi of P . For U(2, 2) our Shimura variety is four-complex-
dimensional so eight-real-dimensional, and the boundary is seven-dimensional.
Each of the boundary pieces ∂P is seven-dimensional (a certain bundle over the
appropriate base space), and these are glued together along a six-dimensional
nil bundle over circles. (A nil bundle is one coming from a successive extensions
of R/Z).

Now look at cohomology; get a long exact sequence

· · · → Hi
c(YG)→ Hi(YG)→ Hi(∂)→ Hi+1

c (YG)→ · · · .

We have a map Hi
c(∂P ) → Hi(∂P ), and it factors through Hi(∂). From this

long exact sequence, we see that to attach Galois representations to systems of
Hecke eigenvalues appearing in Hi(YM ) (which appears in Hi(∂P ) from the nil
bundles), we just need to do so for systems of Hecke eigenvalues appearing in
H ·c(YG). Since M is our Levi that gives us our symmetric spaces (e.g. Bianchi
manifolds), that’s the cohomology we really want to attach Galois representation
to. By Hochschild-Serre it suffices to use systems of eigenvalues in H∗c (YG). But
we can think of this as étale cohomology of a perfectoid space (a Shimura variety
at “level p∞”), and use a comparison theorem with coherent cohomology, and
ultimately to classical modular forms on U(2, 2).
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