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Summary: In this lecture the speaker introduces the Hodge-Tate spectral se-
quence for proper smooth rigid analytic varieties, and proves that it converges
to de Rham cohomology. The argument proceeds in a number of steps; we first
pass to the pro-étale topology, and then show that the resulting cohomology
groups can be realized in terms of differentials (which ultimately relies on com-
putations involving a complex of relative de Rham period rings, and a version
of Faltings’ extension). Finally, we discuss two natural short exact sequences
that arise from this Hodge-Tate spectral sequence, which turn out to be dual to
each other.

This talk will discuss the Hodge-Tate spectral sequence developed by Scholze.
Let C be a complete algebraically closed extension of Qp, and for most of the
talk X/C will be a proper smooth rigid analytic variety. Recall that we have
the Hodge-de Rham spectral sequence

Eij
1 = Hj(X,Ωi

X) =⇒ Hi+j
dR (X),

coming from the natural Hodge filtration on the de Rham complex, Filk Ω·X =

Ω≥kX . If X/C is a scheme, then the Hodge-de Rham spectral sequence degener-
ates, which can be proven in general by a “spreading out” argument to reduce
to the case of a DVR. There’s also another spectral sequence that we can form,
the Hodge-Tate spectral sequence.

Theorem 1. There is a Hodge-Tate spectral sequence

Eij
2 = Hi(X,Ωj

X)(−j) =⇒ Hi+j
ét (X,Qp)⊗Qp C.

If X/C is a scheme, then the Hodge-Tate spectral sequence degenerates
at E2; this should be true in general (without assuming it’s a scheme). The
sequence in the theorem is the descent spectral sequence for the projection
ν : Xproét → Xét.
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Step 1 of the Proof:

Hi
ét(X,Qp)⊗Qp

C ∼= Hi(Xproét, ÔX).

This follows from the basic comparison theorem proven yesterday, that we had
an almost isomorphism

Hi
ét(X,Z/p)⊗Z/p OC/p ∼=a Hi(Xét,O+

X/p).

We then use a devissage argument to get

Hi
ét(X,Z/pn)⊗Z/pn OC/p

n ∼=a Hi(Xét,O+
X/p

n).

Then can take a direct limit, and get

Hi(Xproét, Ẑp)⊗Zp
OC

∼=a Hi(Xproét,O+
X),

where Ẑp = lim←−Z/pn on the pro-étale site. Finally, inverting 1/p gives the iso-
morphism we were looking for.

Step 2: Let X/C be a smooth adic space. Then there exists a natural isomor-
phism Rjν∗ÔX

∼= Ωj
Xét

(−j). There are two steps to proving this, first getting
the identification for j = 1 and then studying the exterior powers of that to get
the identification for larger j.

We start by claiming that if E = R1ν∗ÔX is a locally free OXét
-module of

rank d = dimX, such that
∧j E ∼= Rjν∗ÔX for j ≥ 0. We prove this by looking

locally; assume X → T = Td is a choice of good coordinates, where

T = Spa(C〈T±1
i 〉,OC〈T±1

i 〉)

and this has a Zd
p-cover by

T̃ = Spa(C〈T±1/p∞

i 〉,OC〈T±1/p∞

i 〉).

Then we have a Zd
p-cover X ×T T̃ = X̃ → X, and have

Hi(Xproét, ÔX) = Hi
cont(Zd

p,M)

where M = OX̃(X̃) = OX(X)⊗ C〈T±1/p∞

i 〉. Compute

Hi
cont(Zd

p,M) = OX(X)⊗̂Hi
cont(Zd

p, C〈T
±1/p∞

i 〉).

Next, we note that we have a map

OX(X)⊗̂Hi
cont(Zd

p, C〈T±1
i 〉)→ OX(X)⊗̂Hi

cont(Zd
p, C〈T

±1/p∞

i 〉),

where C〈T±1
i 〉 has the trivial action. It turns out that this is an isomorphism,

and then we have a further isomorphism.

OX(X)⊗̂Hi
cont(Zd

p, C〈T±1
i 〉) ∼= OX(X)⊗̂

i∧
(C〈T±1

i 〉)
d.
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Hence we get H0(Xproét, ÔX) ∼= OX(X), and

Hi(Xproét, ÔX) ∼=
i∧
H1(Xproét, ÔX).

Step 3: We want to prove the identification E ∼= Ω1
Xét

(−1). Why would we
believe this is true? There’s a Poincaré lemma in a simpler situation. Look at
the case where X is over Spa(K,OK) for K a complete discretely valued field
with perfect residue field. Then, we have an exact sequence of sheaves on the
pro-étale site

0→ B+
dR → OB

+
dR → OB

+
dR ⊗ Ω1

X → · · · .

Here, B+
dR is Fontaine’s relative B+

dR. The ring OB
+
dR is locally B+

dR[[u1, . . . , ud]]
where ui = Ti ⊗ 1− 1⊗ [T [

i ].
Remark: This is a rigid version of the Poincaré lemma that Faltings used

to construct his period map. How did those arise? Suppose we had a smooth
X → SpecW (k), and a crystal E over X, which corresponds to a F-vector
bundle with a connection ∇. Then there exists a complex

F → F ⊗ Ω1 → · · · .

Taking a “linearization of this complex” gives a resolution of E by acyclic crystals,

0→ E → F(F)→ L(F ⊗ Ω1)→ · · · .

Evaluate this resolution on A+
crys and get

0→ E(A+
crys)→ F(F)(A+

crys)→ L(F ⊗ Ω1)(A+
crys)→ · · · .

Want to get Faltings’ extension from this Poincaré lemma, looking at gr1. We
can filter the Poincaré lemma by (ker θ)i and take gr1 to get

0→ ÔX(1)→ gr1
F OB+

dR → ÔX⊗OX
→ 0

Once we have this, we apply the pushforward Rν∗ to get the following portion
of a long-exact sequence.

ν∗ÔX(1)→ ν∗ gr1
F OB+

dR → ν∗(ÔX⊗OX
)→ R1ν∗ÔX(1)→ R1ν∗ gr1

F OB+
dR.

We want to show that the boundary map

∂ : ν∗(ÔX⊗OX
)→ R1ν∗ÔX(1)

is an isomorphism. This is equivalent to saying ν∗ gr1
F OB

+
dR and R1ν∗ gr1

F OB
+
dR

are zero. This is a computation, using the fact that

Rkν∗ gr1
F OB+

dR = 0
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for k ≥ 0.
Example: A/C an abelian variety. Then have Hodge-de Rham spectral

sequence, which gives

0→ H0(A,Ω1)→ H1
dR(A)→ H1(A,OA)→ 0.

Also have the Hodge-Tate exact sequence (which we call “HT1”)

0→ H1(A,OA)→ H1
ét(A,Zp)⊗Zp

C → H0(A,Ω1
A)(−1)→ 0

Want to describe this in the case where A has good reduction, using the asso-
ciated p-divisible group; so we have an abelian variety A/OC and G = A[p∞].
We can write down another Hodge-Tate sequence, “HT2”, from the following
theorem.

Theorem 2 (Faltings, Fargues). The complex of finite free OC-modules

0→ (LieG)(1)→ TG⊗Zp ⊗ZpOC → (LieG∗)∗ → 0

has cohomology annihilated by p1/(p−1).

Here TG is the Tate module of G, given by lim←−n
G[pn](C). The map

αG : TG⊗Zp
⊗Zp
OC → (LieG∗)∗

comes from taking α ∈ lim←−G[pn](OC) HomOC
(Qp/Zp, G), dualizing to get α∗ :

G∗ → µp∞ , and linearizing to get Lie(α∗) : Lie(G∗)→ Lieµp∞ ∼= OC . This map
has the rationality property that if G is defined over a field L, then αG can be
defined over the field generated by L and the torsion points.

Theorem 3. The Hodge-Tate sequences HT1 and HT2 are dual.

To prove this, re-write HT1 as

0→ LieA∗ ⊗OC
C → H1

ét(AC ,Zp)⊗Zp
C → (LieA)∗ ⊗OC

C(−1)→ 0.

We can then dualize, and write down a diagram of maps comparing to HT2
which can be verified to commute and have isomorphisms.
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