MSRI Hot Topics Workshop: Perfectoid Spaces and their Applications

p-adic Hodge Theory for Rigid Spaces II -Wiesława Nizioł 9:00am February 21, 2014

Notes taken by Dan Collins (djcollin@math.princeton.edu)

Keywords: Hodge-Tate spectral sequence, Pro-étale site, Rigid geometry

Summary: In this lecture the speaker introduces the Hodge-Tate spectral sequence for proper smooth rigid analytic varieties, and proves that it converges to de Rham cohomology. The argument proceeds in a number of steps; we first pass to the pro-étale topology, and then show that the resulting cohomology groups can be realized in terms of differentials (which ultimately relies on computations involving a complex of relative de Rham period rings, and a version of Faltings' extension). Finally, we discuss two natural short exact sequences that arise from this Hodge-Tate spectral sequence, which turn out to be dual to each other.

This talk will discuss the Hodge-Tate spectral sequence developed by Scholze. Let C be a complete algebraically closed extension of \mathbb{Q}_p , and for most of the talk X/C will be a proper smooth rigid analytic variety. Recall that we have the Hodge-de Rham spectral sequence

$$E_1^{ij} = H^j(X, \Omega_X^i) \implies H^{i+j}_{\mathrm{dR}}(X),$$

coming from the natural Hodge filtration on the de Rham complex, $\operatorname{Fil}^k \Omega_X^{\cdot} = \Omega_X^{\geq k}$. If X/C is a scheme, then the Hodge-de Rham spectral sequence degenerates, which can be proven in general by a "spreading out" argument to reduce to the case of a DVR. There's also another spectral sequence that we can form, the *Hodge-Tate spectral sequence*.

Theorem 1. There is a Hodge-Tate spectral sequence

$$E_2^{ij} = H^i(X, \Omega_X^j)(-j) \implies H^{i+j}_{\text{\'et}}(X, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C.$$

If X/C is a scheme, then the Hodge-Tate spectral sequence degenerates at E_2 ; this should be true in general (without assuming it's a scheme). The sequence in the theorem is the descent spectral sequence for the projection $\nu: X_{\text{pro\acute{e}t}} \to X_{\acute{e}t}$. Step 1 of the Proof:

$$H^i_{\mathrm{\acute{e}t}}(X, \mathbb{Q}_p) \otimes_{\mathbb{Q}_p} C \cong H^i(X_{\mathrm{pro\acute{e}t}}, \widehat{\mathcal{O}}_X).$$

This follows from the basic comparison theorem proven yesterday, that we had an almost isomorphism

$$H^i_{\text{\acute{e}t}}(X,\mathbb{Z}/p) \otimes_{\mathbb{Z}/p} \mathcal{O}_C/p \cong_a H^i(X_{\text{\acute{e}t}},\mathcal{O}_X^+/p).$$

We then use a devissage argument to get

$$H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}/p^n)\otimes_{\mathbb{Z}/p^n}\mathcal{O}_C/p^n\cong_a H^i(X_{\mathrm{\acute{e}t}},\mathcal{O}^+_X/p^n).$$

Then can take a direct limit, and get

$$H^{i}(X_{\text{pro\acute{e}t}},\widehat{\mathbb{Z}}_{p})\otimes_{\mathbb{Z}_{p}}\mathcal{O}_{C}\cong_{a}H^{i}(X_{\text{pro\acute{e}t}},\mathcal{O}_{X}^{+}),$$

where $\widehat{\mathbb{Z}}_p = \varprojlim \mathbb{Z}/p^n$ on the pro-étale site. Finally, inverting 1/p gives the isomorphism we were looking for.

Step 2: Let X/C be a smooth adic space. Then there exists a natural isomorphism $R^j \nu_* \widehat{\mathcal{O}}_X \cong \Omega^j_{X_{\acute{e}t}}(-j)$. There are two steps to proving this, first getting the identification for j = 1 and then studying the exterior powers of that to get the identification for larger j.

We start by claiming that if $\mathcal{E} = R^1 \nu_* \widehat{\mathcal{O}}_X$ is a locally free $\mathcal{O}_{X_{\acute{e}t}}$ -module of rank $d = \dim X$, such that $\bigwedge^j \mathcal{E} \cong R^j \nu_* \widehat{\mathcal{O}}_X$ for $j \ge 0$. We prove this by looking locally; assume $X \to \mathbb{T} = \mathbb{T}^d$ is a choice of good coordinates, where

$$\mathbb{T} = \operatorname{Spa}(C\langle T_i^{\pm 1} \rangle, \mathcal{O}_C\langle T_i^{\pm 1} \rangle)$$

and this has a \mathbb{Z}_p^d -cover by

$$\widetilde{\mathbb{T}} = \operatorname{Spa}(C\langle T_i^{\pm 1/p^{\infty}} \rangle, \mathcal{O}_C\langle T_i^{\pm 1/p^{\infty}} \rangle).$$

Then we have a \mathbb{Z}_p^d -cover $X \times_{\mathbb{T}} \widetilde{\mathbb{T}} = \widetilde{X} \to X$, and have

$$H^i(X_{\text{pro\acute{e}t}},\widehat{\mathcal{O}}_X) = H^i_{\text{cont}}(\mathbb{Z}_p^d, M)$$

where $M = \mathcal{O}_{\widetilde{X}}(\widetilde{X}) = \mathcal{O}_X(X) \otimes C \langle T_i^{\pm 1/p^{\infty}} \rangle$. Compute

$$H^{i}_{\operatorname{cont}}(\mathbb{Z}^{d}_{p}, M) = \mathcal{O}_{X}(X)\widehat{\otimes}H^{i}_{\operatorname{cont}}(\mathbb{Z}^{d}_{p}, C\langle T^{\pm 1/p^{\infty}}_{i} \rangle).$$

Next, we note that we have a map

$$\mathcal{O}_X(X)\widehat{\otimes}H^i_{\mathrm{cont}}(\mathbb{Z}_p^d, C\langle T_i^{\pm 1}\rangle) \to \mathcal{O}_X(X)\widehat{\otimes}H^i_{\mathrm{cont}}(\mathbb{Z}_p^d, C\langle T_i^{\pm 1/p^{\infty}}\rangle),$$

where $C\langle T_i^{\pm 1}\rangle$ has the trivial action. It turns out that this is an isomorphism, and then we have a further isomorphism.

$$\mathcal{O}_X(X)\widehat{\otimes}H^i_{\mathrm{cont}}(\mathbb{Z}_p^d, C\langle T_i^{\pm 1}\rangle)\cong \mathcal{O}_X(X)\widehat{\otimes}\bigwedge^{(C\langle T_i^{\pm 1}\rangle)^d}.$$

i

Hence we get $H^0(X_{\text{pro\acute{e}t}}, \widehat{\mathcal{O}}_X) \cong \mathcal{O}_X(X)$, and

$$H^{i}(X_{\text{pro\acute{e}t}},\widehat{\mathcal{O}}_{X}) \cong \bigwedge^{i} H^{1}(X_{\text{pro\acute{e}t}},\widehat{\mathcal{O}}_{X}).$$

Step 3: We want to prove the identification $\mathcal{E} \cong \Omega^1_{X_{\text{ét}}}(-1)$. Why would we believe this is true? There's a Poincaré lemma in a simpler situation. Look at the case where X is over $\text{Spa}(K, \mathcal{O}_K)$ for K a complete discretely valued field with perfect residue field. Then, we have an exact sequence of sheaves on the pro-étale site

$$0 \to \mathcal{B}^+_{\mathrm{dR}} \to \mathcal{OB}^+_{\mathrm{dR}} \to \mathcal{OB}^+_{\mathrm{dR}} \otimes \Omega^1_X \to \cdots$$

Here, \mathcal{B}_{dR}^+ is Fontaine's relative B_{dR}^+ . The ring \mathcal{OB}_{dR}^+ is locally $\mathcal{B}_{dR}^+[[u_1, \ldots, u_d]]$ where $u_i = T_i \otimes 1 - 1 \otimes [T_i^{\flat}]$.

Remark: This is a rigid version of the Poincaré lemma that Faltings used to construct his period map. How did those arise? Suppose we had a smooth $X \to \operatorname{Spec} W(k)$, and a crystal \mathcal{E} over X, which corresponds to a \mathcal{F} -vector bundle with a connection ∇ . Then there exists a complex

$$\mathcal{F} \to \mathcal{F} \otimes \Omega^1 \to \cdots$$
.

Taking a "linearization of this complex" gives a resolution of \mathcal{E} by acyclic crystals,

$$0 \to \mathcal{E} \to \mathcal{F}(\mathcal{F}) \to \mathcal{L}(\mathcal{F} \otimes \Omega^1) \to \cdots$$

Evaluate this resolution on $A_{\rm crys}^+$ and get

$$0 \to \mathcal{E}(A^+_{\mathrm{crys}}) \to \mathcal{F}(\mathcal{F})(A^+_{\mathrm{crys}}) \to \mathcal{L}(\mathcal{F} \otimes \Omega^1)(A^+_{\mathrm{crys}}) \to \cdots$$

Want to get Faltings' extension from this Poincaré lemma, looking at gr^1 . We can filter the Poincaré lemma by $(\ker \theta)^i$ and take gr^1 to get

$$0 \to \widehat{\mathcal{O}}_X(1) \to \operatorname{gr}^1_F \mathcal{OB}^+_{\mathrm{dR}} \to \widehat{\mathcal{O}}_X \otimes_{\mathcal{O}_X} \to 0$$

Once we have this, we apply the pushforward $R\nu_*$ to get the following portion of a long-exact sequence.

$$\nu_*\widehat{\mathcal{O}}_X(1) \to \nu_*\operatorname{gr}_F^1\mathcal{OB}_{\mathrm{dR}}^+ \to \nu_*(\widehat{\mathcal{O}}_X \otimes_{\mathcal{O}_X}) \to R^1\nu_*\widehat{\mathcal{O}}_X(1) \to R^1\nu_*\operatorname{gr}_F^1\mathcal{OB}_{\mathrm{dR}}^+.$$

We want to show that the boundary map

$$\partial: \nu_*(\widehat{\mathcal{O}}_X \otimes_{\mathcal{O}_X}) \to R^1 \nu_* \widehat{\mathcal{O}}_X(1)$$

is an isomorphism. This is equivalent to saying $\nu_* \operatorname{gr}_F^1 \mathcal{OB}_{\mathrm{dR}}^+$ and $R^1 \nu_* \operatorname{gr}_F^1 \mathcal{OB}_{\mathrm{dR}}^+$ are zero. This is a computation, using the fact that

$$R^k \nu_* \operatorname{gr}_F^1 \mathcal{OB}_{\mathrm{dR}}^+ = 0$$

for $k \geq 0$.

Example: A/C an abelian variety. Then have Hodge-de Rham spectral sequence, which gives

$$0 \to H^0(A, \Omega^1) \to H^1_{\mathrm{dR}}(A) \to H^1(A, \mathcal{O}_A) \to 0.$$

Also have the Hodge-Tate exact sequence (which we call "HT1")

$$0 \to H^1(A, \mathcal{O}_A) \to H^1_{\text{\acute{e}t}}(A, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} C \to H^0(A, \Omega^1_A)(-1) \to 0$$

Want to describe this in the case where A has good reduction, using the associated p-divisible group; so we have an abelian variety A/\mathcal{O}_C and $G = A[p^{\infty}]$. We can write down another Hodge-Tate sequence, "HT2", from the following theorem.

Theorem 2 (Faltings, Fargues). The complex of finite free \mathcal{O}_C -modules

$$0 \to (\operatorname{Lie} G)(1) \to TG \otimes_{\mathbb{Z}_n} \otimes_{\mathbb{Z}_n} \mathcal{O}_C \to (\operatorname{Lie} G^*)^* \to 0$$

has cohomology annihilated by $p^{1/(p-1)}$.

Here TG is the Tate module of G, given by $\varprojlim_n G[p^n](\mathbb{C})$. The map

$$\alpha_G: TG \otimes_{\mathbb{Z}_n} \otimes_{\mathbb{Z}_n} \mathcal{O}_C \to (\operatorname{Lie} G^*)^*$$

comes from taking $\alpha \in \varprojlim G[p^n](\mathcal{O}_C) \operatorname{Hom}_{\mathcal{O}_C}(\mathbb{Q}_p/\mathbb{Z}_p, G)$, dualizing to get $\alpha^* : G^* \to \mu_{p^{\infty}}$, and linearizing to get $\operatorname{Lie}(\alpha^*) : \operatorname{Lie}(G^*) \to \operatorname{Lie}\mu_{p^{\infty}} \cong \mathcal{O}_C$. This map has the rationality property that if G is defined over a field L, then α_G can be defined over the field generated by L and the torsion points.

Theorem 3. The Hodge-Tate sequences HT1 and HT2 are dual.

To prove this, re-write HT1 as

$$0 \to \operatorname{Lie} A^* \otimes_{\mathcal{O}_C} C \to H^1_{\operatorname{\acute{e}t}}(A_C, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} C \to (\operatorname{Lie} A)^* \otimes_{\mathcal{O}_C} C(-1) \to 0.$$

We can then dualize, and write down a diagram of maps comparing to HT2 which can be verified to commute and have isomorphisms.