MSRI Hot Topics Workshop: Perfectoid Spaces and their Applications

Remarks the Cohomology of the Lubin-Tate Tower - Peter Scholze 2:30pm February 21, 2014

Notes taken by Dan Collins (djcollin@math.princeton.edu)

Keywords: Lubin-Tate tower, *p*-adic Local Langlands correspondence, Gross-Hopkins period map

Summary: The speaker describes a construction that takes an admissible \mathbb{F}_p -representation of a *p*-adic field and obtains an admissible D^{\times} -representation in it from cohomology of a sheaf on the infinite-level Lubin-Tate tower that is descended to projective space via the Gross-Hopkins period map. The proof is explained by showing how it is modeled off of a proof of a finiteness theorem from a previous lecture. The speaker then discusses local-global compatibility for these representations.

Originally the talk was supposed to be "Future directions II: Local Langlands and equivariant sheaves on projective space", but the speaker was asked by many participants to speak on this topic instead.

Setup: Let F/\mathbb{Q}_p be a finite extension of degree $n \geq 1$. Let \mathcal{O}_F be the ring of integers, ϖ a uniformizer, $k = \mathcal{O}/\varpi$ the residue field, and \overline{k} an algebraic closure of it. Fix F to be the completion of the unramified extension of F with residue field \overline{k} . From Weinstein's talks, we have the Lubin-Tate space $\mathcal{M}_{LT,\infty}$ (which was a perfectoid space) on which $\operatorname{GL}_n(F) \times D^{\times}$ acts, where D/F is the division algebra of invariant 1/n. Also we have the Gross-Hopkins period map $\pi_{GH} : \mathcal{M}_{LT,\infty} \to \mathbb{P}_{F}^{n-1}$. This is D^{\times} -equivariant (for the natural action of D^{\times} on \mathbb{P}^{n-1}) and also $\operatorname{GL}_n(F)$ -equivariant (for the trivial action on \mathbb{P}^{n-1}).

Theorem 1 (Gross-Hopkins). The map π_{GH} is surjective, so is a $GL_n(F)$ -torsor.

Remark: The surjectivity here is absolutely crucial to what we're doing, and the argument won't carry over to other Rapoport-Zink spaces because the period maps there aren't surjective!

Recall some facts about ℓ -adic cohomology for $\ell \neq p$. Fix a supercuspidal representation π of $\operatorname{GL}_n(F)$. Then:

Theorem 2 (Harris-Taylor, Mieda). Take C/\check{F} algebraically closed and complete. Consider

 $\operatorname{Hom}_{\operatorname{GL}_n(F)}(\pi, H^i_c(\mathcal{M}_{LT,\infty,C}, \overline{\mathbb{Q}}_\ell)).$

This still has an action of D^{\times} , and also an action of W_F (extending the action of inertia via Weil descent, coming from the Galois group of C). Then, as a $D^{\times} \times W_F$ -module, this space is isomorphic to $JL(\pi) \otimes LLC(\pi)$ (up to some twists and duals) if i = n - 1, and is trivial otherwise.

One would like to have a similar result in the *p*-adic case. But then we run into a problem: there's no finiteness results for the \mathbb{F}_p -cohomology. Even at finite level, the cohomology changes if we change the algebraic closure C. However, we'll see that if one does things in the correct way we still get a finiteness result.

Construction: Let π be an admissible \mathbb{F}_p -representation of $\operatorname{GL}_n(F)$ on a vector space V. We descend the constant sheaf \underline{V} over $\mathcal{M}_{LT,\infty}$ to $\mathbb{P}^{n-1}_{\check{F}}$ via the $\operatorname{GL}_n(F)$ -action. Get a sheaf \mathcal{F}_{π} on $\mathbb{P}^{n-1}_{\check{F},\eta}$.

Theorem 3. For all $i \ge 0$, the group $H^i(\mathbb{P}^{n-1}_C, \mathcal{F}_{\pi})$ (which has a natural action of $D^{\times} \times W_F$) is an admissible D^{\times} -representation, is independent of C, and zero for i > 2(n-1).

Proposition 4. This is compatible with global correspondences.

Strategy for proving the finiteness theorem: follow the proof of the "Old Theorem" that Nizioł explained, that if X/C is proper and smooth then $H^i(X_{\text{\acute{e}t}}, \mathbb{F}_p)$ is finite-dimensional. There were two main steps:

(1) Prove almost-finite-generation of $H^i(X_{\text{ét}}, \mathcal{O}_X^+/p)$.

(2) Use Artin-Schreier sequence argument to get an almost-isomorphism

$$H^i(X_{\mathrm{\acute{e}t}}, \mathbb{F}_p) \otimes \mathcal{O}_C/p \cong_a H^i(X_{\mathrm{\acute{e}t}}, \mathcal{O}_X^+/p)$$

Of course, in our new case we don't want a finite-dimensional representation, but an admissible one, so need to change our setup a bit. To do this we define a funny cohomology theory.

Definition 5. Fix $K \subseteq D^{\times}$ a compact open. If \mathcal{G} is a D^{\times} -equivariant sheaf on \mathbb{P}^{n-1} , define a cohomology group

$$R\Gamma(\mathbb{P}_C^{n-1}/K,\mathcal{G}) = R\Gamma_{\rm cont}(K,R\Gamma(\mathbb{P}_C^{n-1},\mathcal{G})).$$

The notation is because we want to think of descending \mathcal{G} to a sheaf on a quotient \mathbb{P}_C^{n-1}/K , but this doesn't quite make sense itself. Then, we have the following key proposition.

Proposition 6. $H^{i}(\mathbb{P}^{n-1}_{C}/K, \mathcal{F}_{\pi} \otimes \mathcal{O}^{+}/p)$ is almost finitely generated.

If we assume this, then step 2 of the argument above goes through, and we conclude:

Corollary 7. The group $H^i(\mathbb{P}^{n-1}_C/K, \mathcal{F}_{\pi})$ is finite-dimensional, and we have an almost-isomorphism

$$H^{i}(\mathbb{P}^{n-1}_{C}/K,\mathcal{F}_{\pi})\otimes\mathcal{O}_{C}/p\cong_{a}H^{i}(\mathbb{P}^{n-1}_{C}/K,\mathcal{F}_{\pi}\otimes\mathcal{O}^{+}/p).$$

Thus if we take a direct limit over K, get the "basic comparison theorem"

$$H^{i}(\mathbb{P}^{n-1}_{C},\mathcal{F}_{\pi})\otimes\mathcal{O}_{C}/p\cong_{a}H^{i}(\mathbb{P}^{n-1}_{C},\mathcal{F}_{\pi}\otimes\mathcal{O}^{+}/p).$$

Corollary 8. $H^i(\mathbb{P}^{n-1}_C, \mathcal{F}_{\pi})$ is an admissible D^{\times} -representation.

Proof. Induct on i (so assume the result holds for all degrees i' < i). Then there's a Hochschild-Serre spectral sequence

$$H^{m_1}_{\operatorname{cont}}(K, H^{m_2}(\mathbb{P}^{n-1}_C, \mathcal{F}_{\pi})) \implies H^{m_1+m_2}(\mathbb{P}^{n-1}_C/K, \mathcal{F}_{\pi}).$$

Then, it's a fact that if ρ is an admissible D^{\times} -representation then the dimension of all $H_{Cont}^{i}(K,\rho)$ are finite. Then, if we look at the terms contributing to $H^{i}(\mathbb{P}_{C}^{n-1}/K,\mathcal{F}_{\pi})$, there are a bunch of terms with $m_{1} < i$ (which are finitedimensional by induction) and a term $H^{i}(\mathbb{P}_{C}^{n-1},\mathcal{F}_{\pi})^{K}$. Since $H^{i}(\mathbb{P}_{C}^{n-1}/K,\mathcal{F}_{\pi})$ is finite-dimensional by the above corollary, this forces $H^{i}(\mathbb{P}_{C}^{n-1},\mathcal{F}_{\pi})^{K}$ to be finite-dimensional.

So we need to prove the key proposition. Back to the "old theorem": we had X/C proper and smooth, and we use an argument of shrinking covers due to Cartan-Serre and Kiehl. The idea is to take finite covers

$$X = \bigcup_{i \in I} U_i = \bigcup_{i \in I} V_i$$

with U_i, V_i affinoids satisfying $\overline{U}_i \subseteq V_i$ (and having good coordinates, etc.). Then the key lemma was:

Lemma 9. Let U, V be affinoids of finite type over C with $\overline{U} \subseteq V$. Then $H^i(V_{\text{\'et}}, \mathcal{O}^+/p) \to H^i(U_{\text{\'et}}, \mathcal{O}^+/p)$ has almost-finitely-generated image.

Now, we turn back to the new case of our key proposition,. Take finite covers

$$\mathbb{P}_C^{n-1} = \bigcup_{i \in I} U_i = \bigcup_{i \in I} V_i$$

with U_i, V_i affinoids satisfying $\overline{U}_i \subseteq V_i$ (and the other properties we needed above). Moreover can assume the U_i and V_i are K-stable by shrinking K if need be. Now, since $\pi_{GH} : \mathcal{M}_{LT,0,C} \to \mathbb{P}_C^{n-1}$ is surjective, the inclusion $V_i \to \mathbb{P}_C^{n-1}$ lifts to a map $V_i \to \mathcal{M}_{LT,0,C}$. Also, note that $\mathcal{F}_{\pi}|_{\mathcal{M}_{LT,0}}$ depends only on $\pi|_{\mathrm{GL}_n(\mathcal{O}_F)}$, as $\mathcal{M}_{LT,\infty} \to \mathcal{M}_{LT,0}$ is a $\mathrm{GL}_n(\mathcal{O}_F)$ -torsors.

Lemma 10. If $U, V \subseteq \mathcal{M}_{LT,0,C}$ are K-stable affinoids with $\overline{U} \subseteq V$, then for any admissible $\mathrm{GL}_n(\mathcal{O}_F)$ -representation π , the image of

$$H^{i}(V/K, \mathcal{F}_{\pi} \otimes \mathcal{O}^{+}/p) \to H^{i}(U/K, \mathcal{F}_{\pi} \otimes \mathcal{O}^{+}/p)$$

is almost finitely generated.

Proof. We start by taking a resolution of π by a complex whose terms are finite products of $C(\operatorname{GL}_n(\mathcal{O}_F), \mathbb{F}_p)$. Then there's a spectral sequence computing the cohomology of π in terms of the cohomology of the resolution, so we can reduce to the case where $\pi = C(\operatorname{GL}_n(\mathcal{O}_F), \mathbb{F}_p)$.

So have $U \subseteq V \subseteq \mathcal{M}_{LT,0,C}$. Can take the preimages under the map $f : \mathcal{M}_{LT,\infty,C} \to \mathcal{M}_{LT,0,C}$, giving $U_{\infty} \subseteq V_{\infty}$ with $\overline{U}_{\infty} \subseteq V_{\infty}$. Moreover, $\mathcal{F}_{\pi} = f_* \mathbb{F}_p$, so we conclude

$$H^{i}(V/K, \mathcal{F}_{\pi} \otimes \mathcal{O}^{+}/p) = H^{i}(V_{\infty}/K, \mathcal{O}^{+}/p).$$

Next, we use the isomorphism between the Lubin-Tate tower and the Drinfeld tower, so we can move U_{∞} and V_{∞} over to $\mathcal{M}_{Dr,\infty,C}$. But now, since $K \subseteq D^{\times}$ is compact open, we can pass to a finite level $\mathcal{M}_{Dr,K,C}$ which is locally finite-type over C, and get affinoids U_K, V_K with $\overline{U}_K \subseteq V_K$.

Finally, it's obvious that

$$H^i(V_\infty/K, \mathcal{O}^+/p) = H^i(V_K, \mathcal{O}^+/p).$$

So we're reduced to showing that

$$H^i(V_K, \mathcal{O}^+/p) \to H^i(U_K, \mathcal{O}^+/p)$$

has finitely-generated image. But this follows from the lemma mentioned above. $\hfill \square$

Local-global compatibility: Let \mathbb{F}^+ be a totally real field and \mathbb{F}/\mathbb{F}^+ be a CM extension. Suppose that there's only one place over p, that the corresponding localization $(\mathbb{F}^+)_p$ is isomorphic to our local field F from above, and that \mathbb{F}/\mathbb{F}^+ is split at p. Take G/\mathbb{F}^+ a compact unitary group which is GL_n at p. Fix $K^p \subseteq G(\mathbb{A}_{\mathbb{F}^+,f}^p)$. Then, let

$$\pi = C(G(\mathbb{F}^+) \setminus G(\mathbb{A}^p_{\mathbb{F}^+, f}) / K^p, \overline{\mathbb{F}}_p),$$

which has an action of $\operatorname{GL}_n(F)$ and also of a Hecke algebra \mathbb{T}_{K^p} away from p.

The question is then, what happens if we plug in this π to the machine above? For this, look at an inner form G' of G (which is now D^{\times} at p, and U(1, n - 1) at some infinite place, and left the same as G at the other places). This gives rise to a compact Shimura variety Sh_{K^p} . Can then look at

$$\pi' = H^i(\mathrm{Sh}_{K^p}, \overline{\mathbb{F}}_p),$$

which has an action of $D^{\times} \times \operatorname{Gal}_{\mathbb{F}}$ (though may have needed to use a similitude group to get this Galois action). We then have:

Proposition 11. We have $H^i(\mathbb{P}^{n-1}_C, \mathcal{F}_{\pi}) \cong \pi'$ as representations of $D^{\times} \times \operatorname{Gal}_F \times \mathbb{T}_{K^p}$.

Now, fix a maximal ideal $\mathfrak{m} \subseteq \mathbb{T}_{K^p}$. By a bunch of big theorems, we know that there exists a $\rho_{\mathfrak{m}}$: $\operatorname{Gal}_{\mathbb{F}} \to \operatorname{GL}_n(\overline{\mathbb{F}}_p)$ which has the correct Hecke eigenvalues and $\rho_{\mathfrak{m}}|_{\operatorname{Gal}_F}$ reducible. Assume some sort of big image condition, say that $\operatorname{img} \rho_{\mathfrak{m}} = \operatorname{GL}_n(\mathbb{F}_{p^r})$ for some r. Then, claim that $H^i(\mathbb{P}_C^{n-1}, \mathcal{F}_{\pi_{\mathfrak{m}}})^K$ is $\rho_{\mathfrak{m}}|_{\operatorname{Gal}_F}$ isotypic (and not all zero).

Key input (that requires the big image assumption): A theorem of Emerton-Gee that $H^i(\operatorname{Sh}_{K^p}, \overline{\mathbb{F}}_p)_{\mathfrak{m}}$ is $\rho_{\mathfrak{m}}$ -isotypic. When one knows this, the above is immediate from the proposition (except the "not all zero" part, but that's not hard to show).