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Description of the Course 
It is Problem-Based, Interactive 

 
•  Rationale:   To foster mathematical practices,  

   especially making mathematical  
   connections 

•  Instruments:  Problems that invite/require seeing/
   making connections 

•  Topics:  Around the arithmetic, algebra, and 
   geometry of the number line 
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Finding/Making/Using 
Mathematical Connections  

& Structure 
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Mathematical Connections and Cognition 
•  The school (and even college) mathematics curriculum 

efficiently organizes mathematics into distinct subjects, but 
students, even when academically successful, often lose 
awareness of the unity and connectivity of mathematical ideas 
across domains.   

•  Perhaps this is because modest amounts of more advanced 
theory are needed to see these cross-domain connections 
clearly.  Learning to make and see such connections is one of 
the aims of the course.   

 
•  The cognitive literature on learning suggests that networks of 

connections is characteristic of deep understanding and of high 
problem solving skills.  
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 Making Mathematical Connections 

A Core Practice 
 •  The feature of mathematics that is least visible in the 

school curriculum is its conceptual unity and coherence. 
•  To cultivate more flexible mathematical thinking, some have 

proposed the use of problems with multiple solutions, and 
multiple solution strategies.  This is valuable, but . . . . 

•  To emphasize connections (and transfer) I have tried, more 
broadly, to design “cross domain problems,” problems 
whose resolution needs to draw resources from different 
mathematical topic areas (arithmetic, algebra, geometry, 
combinatorics, etc.)  

•  The curriculum typically isolates each domain into a 
conceptual and methodological box.  So I am seeking to 
prompt students to “think outside the(se) box(es).” 
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The Nature and Importance of Connections 
•  Types of connections: 

•  Connections of mathematics with “real world” situations and 
science.     (Modeling). 

•  Connections among different mathematical concepts, 
topics.      (Cross domain) 

•  Connections among different mathematical problems or 
situations     (Common structure) 

•  Cognition 
•  Expert vs novice problem solvers:  Knowledge is highly 

connected (networked) 
•  Transfer:  Connected thinking enables recognition of 

common structure across diverse mathematical contexts. 
•  Memory:  Networked knowledge is deeper, more efficient, 

and high leverage in holding complex bodies of information. 
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Mathematical Practice 
•  Mathematical practice: Disciplinary mathematical 

practice is generally acknowledged to involve two 
modes of activity – problem solving and theory 
building.  Theory building is a high level form of 
connection making and conceptual unification.   

•  While problem solving has a significant presence in the 
school curriculum, it is less clear whether there is 
some credible, school appropriate, version of theory 
building.   

•  The course offers one learning activity that could serve 
as a kind of bridge between problem solving and 
theory building.  
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Some Illustrative 
Cross Domain Problems 
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Example 
•  What is the Mathematical Domain of this Problem? 
 
•  Find all (real valued) functions f(x) of a real variable x 

that satisfy the condition: 
 (*)   |f(x) - f(y)|   =  |x - y| 

     for all real numbers x and y. 
 
•  Pre-calculus?  Algebra?   Geometry? 
 
•  Isometries of the line:  Geometry 
 
 

  
 



Traveling in Circles 
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Circle	  Park	  has	  a	  network	  of	  circular	  trails	  for	  cyclists	  to	  use	  (see	  Figure	  below).	  	  The	  
trails	  have	  bridges	  so	  that	  they	  meet	  only	  along	  the	  diameter	  AB.	  	  Which	  is	  the	  
shortest	  way	  to	  travel	  from	  A	  to	  B	  using	  this	  network	  of	  circular	  paths?	  	  	  



Which area is more: The green or the yellow? 
Explain your answer. 
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Where is f continuous? 
 
•  f(x)   =   0  for x irrational 
•  f(x)  =  1/q  for x  =  p/q, rational, in reduced 

    form 

•  Key Lemma:  If a sequence of rational numbers 
approaches an irrational number, their denominators 
approach ∞. 
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Topics 
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ToC of a Proposed Text 
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Ch 0  Foundations 
Ch 1  Place value 
Ch 2  Modular congruence  
Ch 3  The Rules of Arithmetic:  Commutative rings 
Ch 4  Discreteness and density 
Ch 5  (Discrete) additive groups of real numbers 

  Appendix:  Additive semi-groups of N 
Ch 6  Commensurability.  GCD & LCM 

  Appendix:  Multiplicative groups of R   
Ch 7  Primes and factorization 
Ch 8  Modular additive and multiplicative groups 
Ch 9  Combinatorics 
Ch 10  Polynomials 
Ch 11  Discrete calculus 
Ch 12  Complex numbers 

  Appendix:  Additive and multiplicative groups of C 
 



Place Value 
and 

Modular Congruence 
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Division with Remainder (DwR) 
(A cornerstone of the course) 

•  a, b real numbers, b ≠ 0. 
•  a   =  qb  +  r  (uniquely)    q in Z,   0 ≤ r < |b| 

  =  qb(a)b  +  rb(a)   
•  The case b  =  1:    [a]  =  q1(a),     <a>  =   r1(a)

    “integer part”  “fractional part” 
•  qb(a)   =   [a/b]   rb(a)/b  =  <a/b> 

•  b | a  ó  rb(a)  =  0 
 
•  Congruence mod m:   

•  a  =m  b   means  m | (b – a)  
•  =m  preserves sums and (for integers) products. 
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Base-b expansions 
•  b an integer > 1  Base-b digits:  {0, 1, . . . , b-1} 
•  a   a real number ≥ 0 
 

•  a   =  Σ h  dh(a)bh   dh(a)  =  rb([ab-h]) 
•  dh(a)  =  0 for  h >> 0.   
 
For a ≥ 1: 
•  δ(a) (or δb(a))  =Def    1 +  max {h | dh(a) > 0}  
•  Order of magnitude of a   =    bδ(a)-1 

•  For an integer a,  
•  δ(a)  =  the number of significant digits of a 
•  δ(aa’)   ≤    δ(a) + δ(a’)    so     δ(ae)  ≤  e•δ(a)  
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Base-2: 
How Many Multiplications Needed to Calculate NE ? 

 
Using iterated squaring, show that you need at most 

n(s – 1) 
 

multiplications, where n  =  δ2(N) - 1, and s is the sum of 
the base-2 digits of E. 
 
(Much smaller than E – 1.) 
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Base-1,000 

 
What is the base-1000 representation of 
  

 N   =   48,574,623,791,105 ? 
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Base-10:  “Casting Out Nines” 

“Divisibility Test,”  OR 
Fast Track to the Remainder 

 •  S(N)  =Def  the sum of the digits of N 

•  School math:   9|N    ó   9|S(N) 

•  Math:   S(N)   =9   N  (10  =9  1)   
•  S(N)  is much smaller than N 
•  S(N)     ≤   9•δ(N)   
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Problem 
 
Let     

  A   =   44444444 
  B   =   S(A) 
  C   =   S(B) 
  D   =   S(C) 

What is D? 
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Base-b Expansion of N/D (proper, reduced) 

•  d-h(N/D)   =  qD(rD(Nbh-1)b) 
•  There exist integers (t, p), t ≥ 0, p > 0, such 

that d-(h+p)(N/D)  =  d-h(N/D)  for all h > t 
•  The least values of (t, p) are determined as 

follows: 
•  Write D  =  D0D1 so that all primes dividing D0 

also divide b, and gcd(D1, b)  =  1.  Then: 
•  t  =  the least t such that  bt  =D0  0

 =  “wait time”  (order of nilpotency of b mod D0)  and 
•  p  =  the least p such that bp  =D1 1 

 =  “period”   (order of b in the group (Z/ZD1)x ) 
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(Real) Additive Groups 

23 



A set Α of real numbers is called an 
•  Additive group if: 

(0)  0  is	  in	  A	  
(+)	   	  a,	  b	  in	  A	  	   	  =>	  	   	  a	  +	  b	  is	  in	  A	  
(-‐) 	   	  a	  	  in	  A 	  => 	  -‐a	  	  is	  in	  A 

	  
•  A	  is	  discrete	  if	  0	  is	  “isolated”	  in	  A.	  	  	  
•  In	  that	  case	  there	  exists	  an	  e	  >	  0	  such	  that	  |a	  –	  b|	  	  ≥	  e	  	  for	  
all	  a	  	  ≠	  	  b	  in	  A. 	   	  (A	  is	  uniformly	  discrete)	  
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Examples & Non-Examples 
Q  =  the set of all rational numbers 
Qsq  =  {squares of rational numbers} 
Q0dd  =  {rational numbers with an odd denominator} 
Qsqd  =  {rational numbers with a square denominator} 
Qsfd  =  {rational numbers with square free denominator} 
In the following examples, d is a fixed integer > 0. 
Q≤d  =  {rational numbers with denominator ≤ d} 
Q|d  =  {rational numbers with denominator that divides d} 
Qd*  =  {rational numbers with denominator dividing some 

  power of d} 
Numbers with finite decimal expansion    (=  Q10*) 
R<0  =  {real numbers < 0} 
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Per(f) 

•  Let f(x) be a function of a real variable. 

•  Call a real number p a period of f if  
 f(x+p)   =   f(x)   for all x.  

 
•  Let 

 Per(f)  =  the set of all periods of f 
 
•  Show that Per(f) is an additive group. 

26 



Structure Theory 
•  Easy applications of DwR !! 
•  TH 1.  An additive group is either discrete or dense (DDD) 

•  TH 2.  Discrete groups are cyclic:  A  =  Za  (DGC) 

•  TH 3.  Za + Zb  is discrete iff a and b are commensurable. 
•  Cor.  Z + Z√2 is dense in R. 

•  Then Za + Zb  =  Zd, and Za ∧ Zb  =  Zm,  
•  d  =  gcd(a, b),  m  =  lcm(a, b) 
 

•  Real multiplicative groups: 
•  Examples; torsion {±1}; sgn and |•| homomorphisms 
•  What should discreteness mean? 
•  Structure of discrete multiplicative groups  (exp and log 

isomorphisms) 
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Additive Semi-groups 
•  N(a, b)  =  Na  +  Nb 

•  Theorem.  If a and b are relatively prime natural 
numbers, then the largest integer not in N(a, b) is  

 ab  -  a  -  b  =  (a-1)(b-1)  -  1 
 
•  For three or more numbers there is no known formula 

(Frobenius number) 
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Combinatorics 
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n-Choose-d 
•  nCd  =Def  the number of d-element subsets of an  

   n-element set, say [n]  =  {1, 2, . . . , n}. 
•  nCd  =  n(n-1)• • •(n-d+1) / d! 

•  n(n-1)• • •(n-d+1)  =  the number of ordered d-  
        tuples of distinct elements of [n] 
        (product of d consecutive integers)  

•  Cor.  n!  =  the number of orderings (permutations) of [n] 
•  Cor.  d!  =  the number of different orderings of d distinct 

   elements. 

Mental note about   n(n-1)• • •(n-d+1)/d! :   
“Hey, I’m an integer!”   

“Funny, you don’t look like it.” 
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The Next  Class 
 
 
Show that:  

A product of d consecutive integers  
is always divisible by d! 
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Relatively Prime Factorizations 
•  Let N be an integer > 0. 
•  Show that the number of factors d of N such that       

gcd(d, N/d)  =  1 is 2r, where r is the number of 
distinct prime divisors of N. 

OR 
 

•  How many factors d of N are there such that       
gcd(d, N/d)  =  1? 

(cross domain) 
 

32 



Prime Power Factorization 
•  N  =  q1•q2•  • • • qr 

•  qj  =  power of a prime pj 

•  p1, p2, . . . , pr   distinct 

•  d  =  a product of a subset of {q1, q2, . . . , qr} 
    
   Crossing a Bridge to: 

 
•  Combinatorics:  # subsets of {q1, q2, . . . , qr}  =  2r 
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Discrete Calculus 
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Sequences as Functions 

•  F  =  RN  =  {functions  f: N  –––>  R} 
•  Same thing as an infinite sequence 

 (f(0), f(1), f(2), f(3), . . . , f(n). . . . ) 
     of real numbers.   
•  Commutative ring (containing R: constant functions) 
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Discrete Calculus 
•  Δf   (“derivative”)   and   Sf   (“integral”) 

  (Δf)(x)  =  f(x+1) – f(x) 
and   (Sf)(x)  =  f(0) + f(1) + . . .  + f(x-1)   

    (Note:  (Sf)(0)  =  0) 
Properties: 
(a)     Δf  =   0   ó  f is constant.   
(b) Hence,  Δf  =  Δg   ó   g  =  f  + constant. 
(c)      Δ(f•g)(x)  =  (Δf)(x)•g(x+1)  +  f(x)•(Δg)(x) 

     (Product rule) 
(d) If f(x)  =  xn then 

  (Δf)(x)  =  (x+1)n – xn    

    =    Σ0≤d<n   nCd •xd 
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The Fundamental Theorem of  
Discrete Calculus  (FTDC) 

 
For any f  in  F, we have: 
 

 Δ(Sf)    =   f,   and    
  
 S(Δf)   =   f  -  f(0)   
         
     (“constant of integration”) 
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The binomial polynomials 
For each integer d ≥ 0 we define the polynomial  
•   Bd(x)   =  “xCd”   =  x(x-1)• • • (x-d+1)/d! 

 (We agree to put Bd = 0 for d < 0.) 
 
•  B0(x)  =  1,   B1(x)  =  x,   B2(x)  =  x(x-1)/2 
•  deg(Bd)  =  d, and its leading term is xd/d!    
•  Bd(x)  =  0  for  x  =  0, 1, . . ., d-1  (d roots) 
Moreover: 
•  Bd(x)  is an integer whenever x is an integer.   
•  (Pascal)  ΔBd   =  Bd-1 
•         SBd   =  Bd+1 
•  { Bd | d ≥ 0} is a basis for R[x] 
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xd  as a linear combination of Binomials 
d  =  0:  x0  =  1  =   B0 
 
d  =  1:  x1  =  x  =   B1 
 
d  =  2:  x2  =  B1  + 2B2 

 
d  =  3:  x3   =  B1 + 6B2 + 6B3  
 
d  =  4:  x4   =  B1 + 14B2 + 36B3 + 24B4 
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When   f   =   a0B0 + a1B1 + . . . + adBd  
  Δf   =   a1B0 + a2B1 + . . . + adBd-1 
and  

 Sf   =   a0B1 + a1B2 + . . . + adBd+1 
(Calculus couldn’t be easier!) 
Results.   
•  If f is a polynomial of degree d, then Sf is a 

polynomial of degree d+1. 

•  For f  in  F, if Δf is a polynomial of degree   d – 1 
then f is a polynomial of degree d.  

•  f(x) is an integer for all integers x iff all aj are 
integers. 

 
    

  Math 498       Fall  2013    
Mathematical Perspectives and Practices Germane to the Teaching 

of Mathematics 

40 



Sums of dth powers of coneseuctive integers 
For d ≥ 0, Put   Sd(x)  =  0d + 1d + 2d + . . . + (x-1)d 

Observation:  If we put  Pd(x)  =  xd       then    Sd    =   SPd 
 
Writing Pd as a linear combination of binomials then we get an easy formula for Sd.  
 
d = 1:     S1(x)  =  (SB1)(x) =  B2(x)  =  x(x-1)/2 
 
d = 2;  P2  =  B1 +2B2:   

    S2(x)  =  SP2   =  B2(x)   +    2B3(x)  
   =  x(x-1)/2   +   2x(x-1)(x-2)/6 
   =  [x(x-1)/6][3 + 2(x-2)]  =  (x-1)x(2x-1)/6 

 
d = 3;  P3  =  B1 +6B2  + 6B3  so    

    S3(x)  =  B2(x)  +  6B3(x)  +  6B4(x)   
   =   x(x-1)/2   +   x(x-1)(x-2)  +  x(x-1)(x-2)(x-3)/4 
   =  [x(x-1)/4][2 + 4(x-2) + (x-2)(x-3)]   
   =  [x(x-1)/4][x2 – x] 
   =  [(x2 – x)/2]2  =  S1(x)2 
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Discrete Calculus as a Nexus of  
Mathematical Themes 

•  Numerical sequences: Looking for growth patterns (linear, 
quadratic, . . . ) using difference methods 

•  The formal analogy with calculus 

•  Combinatorics and polynomial algebra:  binomial coefficients 
(Pascal); the Binomial Theorem 

•  Power sums:  Sd(n) = 0d + 1d + 2d + , , , + (n-1)d as discrete 
integrals.  Sd is a polynomial of degree d+1. 

•  Linear algebra:  Expressing the xd (d ≥ 0) in terms of the new 
basis (Bd(x))d≥0.  Integer values at integers. 
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Common Structure  
Problem Sets 

43 



An instructional design to bridge  
problem solving and “theory building”: 

Common Structure Problem Sets 
0.  A set of 5-12 problems, with a multi-part 

assignment: 
1.  Solve the problems. 
2.  Find, articulate, and demonstrate a 

mathematical structure common to all of 
the problems. 

3.  In what ways are the problems different? 
 



The 3-Permutation CSPS 
1.  What are all three-digit numbers that you can make using each of the 

digits 1, 2, and 3, and using each digit only once?  
 
2.  Angel, Barbara, and Clara run a race.  Assuming there is no tie, what 

are all possible outcomes of the race (first, second, third)? 
 
3.  You are watching Angel, Barbara, and Clara playing on a merry-go-

round.  As the merry-go-round spins, what are all the different ways that 
you see all three of them in order, from left to right?  

 
4.  In a 3 x 3 grid square, color three of the (unit) squares blue, in such a 

way that there is at most one blue square in each row and in each 
column.  What are all ways of doing this?  

 
5.  Find all of the symmetries(*) of an equilateral triangle 
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Hand-shakes CSPS  (n-choose-2)  
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Pascal CSPS  (14-choose-4) 
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1.  (Taxi cab geometry).  A taxi wants to drive (efficiently) from one corner to another that is 10 blocks north, and 4 blocks east.  How many 
possible routes are there to do this?  

2.  (Triangular Graph) In the triangular array, 
• 

•  • 
•        •  • 

•         •      •  • 
•         •        •     •  • 

•                         •        •       •     •  • 
•       •         •         •       •     •  •  

.  .  continued  .  .  . 
connect each dot by an edge to the two nearest dots just below it.  At each dot, write the number of “edge-paths” downward to it from the top 
dot.  What is the number in 15th row, the 5th dot from the left? 
 

3.  (Walk on the line) On the number line, starting at 0, you are to take14 steps, each of which is either distance 1 to the right, or distance 1 to the 
left, and in such a way that you end up at -6.  How many ways are there to do this? 

4.  (Unifix towers)  Using 10 white and 4 red unifix cubes, how many different 14-cube towers can you make? 

5.  (Soccer score progressions) The home team won a soccer game 10 to 4.  What are all the possible sequences of scoring as the game 
progressed? 

6.  (Choosing a team) In a class of 14 students, you need to select a 4-student team.  How many different ways are there to do this?  

7.  (Balls in 2 bins) What are all ways of putting 14 balls into two bins so that 10 balls are in bin A and 4 in bin B? 

8.  (Cutting a ribbon)  You are to cut a 15-inch ribbon into five pieces, each of length a whole number of inches.  How many ways are there to do 
this? 

9.  (Binomial Theorem) In the polynomial (1 + y)14, what is the coefficient of y4 ?  



Expanded Usiskin CSPS    (1/2  =  1/n + 1/m) 
1.  Find all ways to express ½ as the sum of two unit fractions (i.e. fractions of the form 1/n, n a 

positive integer). 
2.  Find all rectangles with integer side lengths whose area and perimeter are numerically equal. 
3.  Which pairs of positive integers have harmonic mean equal to 4?(*) 
4.  Nan can paint a house in n days, and Mom can paint it in m days (n and m positive integers).  

Working together they can paint the house in 2 days.  What are the possible values of n and m?  
5.  The product of two integers is positive and twice their sum.  What could these integers be? 
6.  Given a point P in the plane, find all n such that a small circular disk centered at P can by 

covered by non-overlapping congruent tiles shaped like regular n-gons that have P as a 
common vertex. 

7.  For which integers n > 2 does n – 2 divide 2n? 
8.  For which positive numbers s does p(x)  =  x2  -  sx  +  2s  have integer roots? 
9.  Two vertical poles, A and B, have heights a meters and b meters, respectively, with a and b 

integers.  A wire is stretched from the top of pole A to the base of pole B, and another wire is 
stretched from the top of pole B to the base of pole A.  These wires cross at a point 2 meters 
above the ground.  What are the possible values of (a, b)? 

10. The base b and corresponding height h of a triangle are integers.  A 2 x 2 square is inscribed in 
the triangle with one side on the given base, and vertices on the other two sides.  What are the 
possible values of the pair (b, h)? 

11.  Let u be a positive real number.  Find all solutions (n, m, v) with n and m positive integers, and 
v > 0, of the equation:  (uv)2  =  un  =  vm 

 
----------------------- 
(*) The harmonic mean h of n numbers a1, a2, . . . , an: 1/h is the average of 1/a1, 1/a2, . . . , 1/an 

 



Measure Exchange CSPS 
1.  (Tea & wine) I have a barrel of wine, and you have a cup of green tea.  I put a teaspoon of my wine into your 

cup of tea.  Then you take a teaspoon of the mixture in your teacup, and put it back into my wine barrel.   
Question:  Is there now more wine in the teacup than there is tea in the wine barrel, or is it the other way 
around? 

2.  (Heads up)  I place on the table a collection of pennies.  I invite you to randomly select a set of these coins, 
as many as there were heads showing in the whole group.  Next I ask you to turn over each coin in the set 
that you have chosen.  Then I tell you:  The number of heads now showing in your group is the same as the 
number of heads in the complementary group.  Question:  How do I know this?  

3.  (Faces up)  I blindfold you and then place in front of you a standard deck of 52 playing cards in a single 
stack. I have placed exactly 13 of the cards face up, wherever I like in the deck.      Your challenge, 
while still blindfolded, is to arrange the cards into two stacks so that each stack has the same number of face-
up cards.  

4.  (Triangle medians)  In a triangle, the medians from two vertices form two triangles that meet only at the 
intersection of the medians.  How are the areas of these two triangles related?  More precisely, let ABC be a 
triangle.  Let A’ be the mid-point of AC, B’ the mid-point of BC, and D the intersection of AB’ and BA’.  How 
are the areas of AA’D and BB’D related?  

5.  (Trapezoid diagonals)  The diagonals a trapezoid divide the trapezoid into four triangles.  What is the 
relation of the areas of the two triangles containing the legs (non parallel sides) he trapezoid? 

 



Conclusions and Questions 
•  Anecdotally:  The students report that they find the 

course challenging, but worthwhile and engaging.   
-  “Your course made me think about math in ways I 

 never had before.”  
-  “I hope to be a better math teacher because of it.” 

•  I have shown you some of the curricular materials, 
but not the pedagogy, which is still experimental.  It 
requires a lot of time, interaction, and scaffolding. 

•  Assessment:  I do not yet have well designed 
measures of the effectiveness of this curriculum and 
instructional design.  Suggestions welcome. 
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Thank	  you!	  
hybass@umich.edu	  
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The Euclidean Algorithm for finding gcd(a, b) 

 To find d = gcd(a, b) we can assume that a ≥ b ≥ 0.   
 
Then put a0 = a and a1 = b.  If a1 = 0 we have d   =   a0.   
 
If a1 > 0 we apply Division w Remainder to write:  

  a0 = q1a1 + a2,  with q1 an integer  and     0 ≤ a2 < a1.  
  
Since a2 = a0 – q1a1, it follows that 

 gcd(a0, a1)  =  gcd(a1, a2),   with  a1 > a2 ≥ 0 
 
If a2 = 0 then we have d   =   a1.  If a2 > 0 then we repeat the process to obtain 

 gcd(a1, a2)  =  gcd(a2, a3),   with  a2 > a3 ≥ 0, 
   

etc.,  finally producing: 
 
    gcd(a0, a1)  =  gcd(ai, ai+1)   (i = 1, 2, …, n)   
with  
    a0  >  a1  >  . . .  >  an  >  an+1  =   0,   and  d   =   an. 
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Euclidean Algorithm for gcd(a, b) <––>  
Square Tiling of an a x b Rectangle 
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“Greedy Algorithm” for Square Tiling 
Keep cutting off the biggest possible squares 
Euclidean Tiling of a 12 x 5 Rectangle 



How many squares to tile a rectangle?  (The 8 x 9 case) 
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The Greedy (Euclidean) tiling:     1 + 8   =   
9 tiles 

Fewer:     7 tiles 
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