

California Math Teacher Preparation and the Common Core

Eric Hsu

Director, Center for Science and Mathematics Education

Professor, Mathematics

Judy Kysh

Professor, Mathematics and Secondary Education

- 1. The Standards Have Come To Us
- 2. Changes in CA Teacher Curriculum
- 3. A Sample Task
- 4. Discussion
- 5. Thanks

STATE (1)

The Standards Have Come To Us

Elementary and Secondary Math Teacher Deep Curriculum

- Math can make sense.
- Math can convince others.
- Math is about inventiveness and exploration, as well as precision.
 - convergent AND divergent thinking
- · Math facts can be deduced, not just recalled.
- Math algorithms can/should be explained.
- Know the feeling of math making sense and not making sense.
 - (So you know when to get help.)

Elementary and Secondary Math Teacher Deep Curriculum

- Team problem solving
- Non-routine problems
- Representations: symbolic, physical, visual, numerical, verbal
- Non-standard algorithms
- Whole class argumentation

Alignment with Old Standards

- Old CA Standards Strands
 - Number Sense
 - Algebra and Functions
 - Measurement and Geometry
 - Statistics, Data Analysis, and Probability
 - Mathematical Reasoning (a chapter!)
 - e.g. MR7.1.0. 'Students make decisions about how to approach problems'
- Common Core Standards
 - Standards for Mathematical Practice, better aligned!

(Practices) Standards Have Come To Us

- Make sense of problems and persevere in solving them.
- Use appropriate tools strategically.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

(Practices) Standards Have Come To Us

- Make sense of problems and persevere in solving them.
- Use appropriate tools strategically.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

- Non-routine problems
- Non-standard algorithms
- Team problem solving
- Group and whole class argumentation
- Representations and Models
 - symbolic, physical, visual, numerical, verbal

(2)

Changes to Teacher Curriculum

Elementary Teacher Coursework (pre-NCLB)

Waiver Program

Math 165: Number System

Math 565: Geometry, Measurement, and Prob

Encouraged

Math 265: Advanced Number Systems (%, Z)

Delightful Bonus

•Math 575, 576, 577, 578: MS & HS Math

Credential Program

EED 784: Math Curriculum & Instruction

Elementary Teacher Coursework (post-NCLB)

Waiver Program Delightful Bonus

- Math 165 : Number System
- Math 565: Geometry, Measurement, and Prob

Encouraged Not Offered

Math 265: Advanced Number Systems (%, Z)

Delightful Bonus Unicorn-like Rarity

Math 575, 576, 577, 578: MS & HS Math

Credential Program

EED 784: Math Curriculum & Instruction

Common Core Changes in the Elementary Math Curriculum

- Practices Anxiety well covered
- Number line representation of numbers
- Part-Whole and Unit Fractions as foundational
 - (5/6 as 5 one-sixths)
- Proportional Reasoning
 - One quantity is a constant multiple of another.
 - Ratios, proportions, rate, percent, scale, slope, geometric similarity, probability...
- (and the reasoning and modeling practices, etc.)

Secondary Math Teacher Coursework

In CA, a Full Math Major (Waiver Program)

	SED 769: Math Curriculum & Instruction
plus in credential program	
MATH 370: Real Analysis I	MATH 475: Capstone Course
MATH 335: Modern Algebra	MATH 375: Early Field Experience
MATH 325: Linear Algebra	MATH 350: Geometry
MATH 301: Proof	MATH 324: Probability and Statistics
MATH 228: Calculus III	MATH 310: Elementary Number Theory
MATH 227: Calculus II	MATH 309: Computation in Mathematics
MATH 226: Calculus I	MATH 300: History of Mathematics

Teacher Fellows: Professional Community & Service Learning

Teacher Fellows (2008-2013)

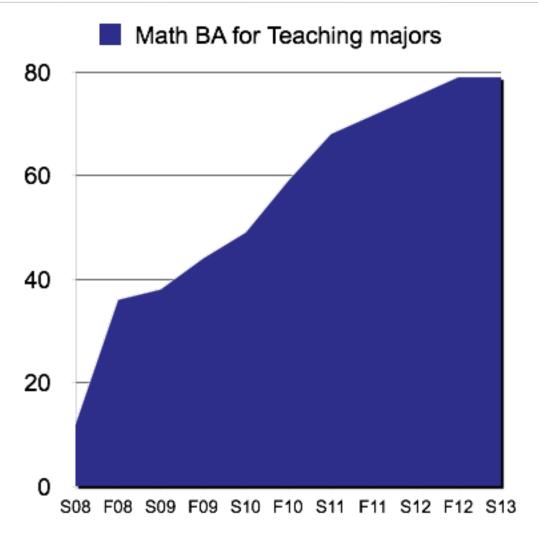
70+ 2013 Fellows

158
Total Fellows

17,000 hrs total community service

25+ schools served

15 school districts served


\$382,000 stipends from university, Federal, private donations

十

\$285,000 outside awards

Triple the Math Teaching Majors

"A model for the state and nation. An outstanding program to be adopted by other campuses, that warrants scale up system-wide."

– CSU Chancellor'sOffice

Secondary Math Teacher Coursework

A Full Math Major (Waiver Program)

& Instruction

SED 759: Math Curriculum	SED 769: Math Curriculum &
plus in credential program	
MATH 370: Real Analysis I	MATH 475: Capstone Course
MATH 335: Modern Algebra	MATH 375: Early Field Experience
MATH 325: Linear Algebra	MATH 350: Geometry
MATH 301: Proof	MATH 324: Probability and Statistics
MATH 228: Calculus III	MATH 310: Elementary Number Theory
MATH 227: Calculus II	MATH 309: Computation in Mathematics
MATH 226: Calculus I	MATH 300: History of Mathematics

Instruction

Added

- Modeling, proportional reasoning
- More probability, expected value
- More stats: p-values, confidence intervals...
- Transformational Geometry
- Removed
 - History of Mathematics
 - Cross Products
 - non-Euclidean Geometry
- Subtle Changes
 - 'Know' to 'Demonstrate knowledge of'
 - 'Know and apply' to 'Apply', 'Justify Steps'

Standards on Paper vs. Standards in Life

- Integrated Courses
 - in theory, a need for powerful inter-connections between algebra and geometry
- Smarter Balanced Assessments
 - o who knows?
 - Computers, free response, non-routine problems
 - High stakes warp the curriculum

O STA (3)

A Sample Task

The Difference of Squares

Some numbers can be expressed as the difference of two squares. For example:

$$8 = 3^2 - 1^2$$

Sometimes there are several ways to do this:

$$15 = 8^2 - 7^2$$
 or $15 = 4^2 - 1^2$

Investigate. Can any whole number N be written as the difference of two squares?

You might try 43, 99, or 60 as a difference of two squares? How about 26?

Generalize and justify your generalizations.

A Problem Protocol (Curriculum & Instruction)

- Restate the essence of the problem.
- Describe your thinking and reasoning as you worked on the problem and clearly show your solution process.
 - Justify your solution (or progress so far with the problem).
- Reflect on the strategies you used. What did you learn?
- What mathematics would students practice or learn?

The Standards Have Come To Us

- Make sense of problems and persevere in solving them.
- Use appropriate tools strategically.
- Reason abstractly and quantitatively.
- Construct viable arguments and critique the reasoning of others.
- Model with mathematics.
- Attend to precision.
- Look for and make use of structure.
- Look for and express regularity in repeated reasoning.

- Non-routine problems
- Non-standard algorithms
- Team problem solving
- Group and whole class argumentation
- Representations and Models
 - symbolic, physical, visual, numerical, verbal

(4) Discussion

(5)

Thanks to NSF

CAREER & MSP

