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Let B
n

be the space of positive definite forms on Rn up to ⇠, where B1 ⇠ B2 i↵
B1 = �gB2, g 2 GL

n

(Z). We can identify it with PGL
n

(Z)\PGL
n

(R)/PO
n

(R).

Given an integral form B, we call B0 to be in the same genus of B i↵ they are locally
equivalent, i.e. (1) 8prime p, 9g 2 GL

n

(Z
p

) such that B = gB0, and (2) 9g 2 GL
n

(R) such
that B = gB0.

Remark 1: (1) and (2) implies that 9g 2 GL
n

(Q) s.t. B = gB0. Hence, condition (2)
can be replaced with: 9g 2 GL

n

(Q) such that B = gB0.

Remark 2: B ⇠ B0 then they have the same genus, but having the same genus does not

imply ⇠. For example, let B =

✓
5 0
0 11

◆
, B0 =

✓
1 0
0 55

◆
, then g =

✓
1/4 �1/4
1/4 5/4

◆

takes care of the infinite place as well as all finite places except for 2, which can be taken

care of by

✓
1/7 �22/7
2/7 5/7

◆
, hence they are in the same genus. However, B 6⇠ B0 because

✓
a b
c d

◆✓
5 0
0 11

◆✓
a c
b d

◆
=

✓
1 0
0 55

◆
implies 5a2 + 11b2 = 1 which has no integer

solution.

From now on n � 3.

Remark 3: B and B0 are in the same genus then they have the same determinant, hence
each genus is a finite set in B

n

.

Theorem 1: Let {B
i

} be a sequence of integral forms mutually not locally equivalent,
and their genus ! 1, then the genus of B

i

equidistributed in B
n

with a rate of a power of
gen(B

i

)�1.

Remark 4: No splitting condition is required in the statement of this theorem. If split-
ting at finite places is assumed the qualitative part of the result follows from earlier works.

Proof: This is based on an adelic equidistribution result.

Let F be a number field, G a semisimple connected algebraic group over F , H a semisim-
ple connected, simply connected group. Fix map ◆ : H ! G which is a homomorphism
with finite kernel over F , ◆(H) ⇢ G is an algebraic subgroup.
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Example: Consider SL2/Q action on sl(3). It is not an isomorphism from SL2 to its
image although the image is the same as SL2 at all places.

Let X = G(F )\G(A), Y = ◆(H(Q)\H(A))g, µ
x

a G(A)-invariant probability measure,
and µ

Y

the g�1
i

H(A)g = H
y

-invariant measure on Y . We want to understand what hap-
pens when Y gets complicated. There are two ways for Y to get “complicated”: through
a complicated H or a complicated g. In both cases the stabilizer is changing.

We can measure the complicity of Y as follows: let ⌦0 ⇢ G(A) be a fixed bounded open
set containing e, define vol(Y ) = m

Y

(⌦0 \H
y

)�1.

Theorem 2: 9� depending on dimFG and [F : Q] (only dimF(G) if assume the quotient
is compact) s.t. (**) if ◆(H) ⇢ G is maximum, 8f 2 C1

c

(X), if G is simply connected,
|µ

Y

(f)�µ
X

(f)| < C
f

vol(Y )��, C
f

is a constant depending only on f . Here, smooth means
smooth on real places and invariant under a compact open subgroup.

Proof: Stab(µ
Y

) = g�1◆(H(A))L(F ) = NG(◆(H)). L can be infinite.

Assume F = Q. For almost every prime p, H
Y

(Q
p

) is not compact. Let U ⇢ H
Y

(Q
p

)
be a one-parameter unipontent subgroup. Y has large volume implies 9x, y 2 Y , y = xg,
such that |g| is bounded by some negative power of vol(V ), and g 62 Stab(µ

Y

). Due to
spectral gap, i.e. H(Q) action on L2(H(Q)\H(A)) being 1/M tempered, most points on Y
are e↵ectively generic for U .

Now, by u
t

action we get g0 2 G such that |µ
Y

(f) � µg

0

Y

(f)| is bounded by a constant

depending on f by a negative power of vol(Y ), In order to make u�1
t

gu
t

has size O(1),
we need to control p with regards to vol(Y ), which is accomplished by using the result of

Prasad and Borel-Prasad: 1 = ⌧(H) = |!|(H(Q)\H(A))D� dimH/2
F

. Prasad gives a product
formula for ! and Borel-Prasad studied L.


