1. Effective equidistribution of certain adelic periods

Joint work with Einsiedler, Margulis, Venkatesh

Let \mathcal{B}_n be the space of positive definite forms on \mathbb{R}^n up to \sim , where $B_1 \sim B_2$ iff $B_1 = \lambda g B_2, g \in GL_n(\mathbb{Z})$. We can identify it with $PGL_n(\mathbb{Z}) \backslash PGL_n(\mathbb{R})/PO_n(\mathbb{R})$.

Given an integral form B , we call B' to be in the same genus of B iff they are locally equivalent, i.e. (1) \forall prime p , $\exists g \in GL_n(\mathbb{Z}_p)$ such that $B = gB'$, and (2) $\exists g \in GL_n(\mathbb{R})$ such that $B = gB'$.

Remark 1: (1) and (2) implies that $\exists g \in GL_n(\mathbb{Q})$ s.t. $B = gB'$. Hence, condition (2) can be replaced with: $\exists g \in GL_n(\mathbb{Q})$ such that $B = gB'$.

Remark 2: $B \sim B'$ then they have the same genus, but having the same genus does not imply \sim . For example, let $B =$ $\begin{pmatrix} 5 & 0 \\ 0 & 11 \end{pmatrix}$, $B' = \begin{pmatrix} 1 & 0 \\ 0 & 55 \end{pmatrix}$, then $g = \begin{pmatrix} 1/4 & -1/4 \\ 1/4 & 5/4 \end{pmatrix}$ 1*/*4 5*/*4 ◆ takes care of the infinite place as well as all finite places except for 2, which can be taken care of by $\begin{pmatrix} 1/7 & -22/7 \\ 2/7 & 5/7 \end{pmatrix}$ ◆ , hence they are in the same genus. However, $B \not\sim B'$ because $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} 5 & 0 \\ 0 & 11 \end{pmatrix} \begin{pmatrix} a & c \\ b & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 55 \end{pmatrix}$ implies $5a^2 + 11b^2 = 1$ which has no integer solution.

From now on $n \geq 3$.

Remark 3: *B* and B' are in the same genus then they have the same determinant, hence each genus is a finite set in \mathcal{B}_n .

Theorem 1: Let ${B_i}$ be a sequence of integral forms mutually not locally equivalent, and their genus $\rightarrow \infty$, then the genus of B_i equidistributed in \mathcal{B}_n with a rate of a power of $gen(B_i)⁻¹.$

Remark 4: No splitting condition is required in the statement of this theorem. If splitting at finite places is assumed the qualitative part of the result follows from earlier works.

Proof: This is based on an adelic equidistribution result.

Let F be a number field, G a semisimple connected algebraic group over F , $\mathbb H$ a semisimple connected, simply connected group. Fix map $\iota : \mathbb{H} \to \mathbb{G}$ which is a homomorphism with finite kernel over $F, \iota(\mathbb{H}) \subset \mathbb{G}$ is an algebraic subgroup.

Example: Consider $SL_2(\mathbb{Q})$ action on $sl(3)$. It is not an isomorphism from SL_2 to its image although the image is the same as *SL*² at all places.

Let $X = \mathbb{G}(F) \backslash \mathbb{G}(\mathbb{A}), Y = \iota(\mathbb{H}(\mathbb{Q}) \backslash \mathbb{H}(\mathbb{A}))$ *g*, μ_x a $\mathbb{G}(\mathbb{A})$ -invariant probability measure, and μ_Y the $g_i^{-1} \mathbb{H}(\mathbb{A})g = H_y$ -invariant measure on *Y*. We want to understand what happens when *Y* gets complicated. There are two ways for *Y* to get "complicated": through a complicated \mathbb{H} or a complicated q . In both cases the stabilizer is changing.

We can measure the complicity of *Y* as follows: let $\Omega_0 \subset \mathbb{G}(\mathbb{A})$ be a fixed bounded open set containing *e*, define $vol(Y) = m_Y(\Omega_0 \cap H_y)^{-1}$.

Theorem 2: $\exists \delta$ depending on dim_F *G* and $[F : \mathbb{Q}]$ (only dim_F(G) if assume the quotient is compact) s.t. (**) if $\iota(\mathbb{H}) \subset \mathbb{G}$ is maximum, $\forall f \in C_c^{\infty}(X)$, if \mathbb{G} is simply connected, $|\mu_Y(f) - \mu_X(f)| \le C_f' vol(Y)^{-\delta}$, C_f is a constant depending only on *f*. Here, smooth means smooth on real places and invariant under a compact open subgroup.

Proof: $Stab(\mu_Y) = g^{-1}\iota(\mathbb{H}(\mathbb{A}))\mathbb{L}(F) = N_{\mathbb{G}}(\iota(\mathbb{H}))$. L can be infinite.

Assume $F = \mathbb{Q}$. For almost every prime p, $H_Y(\mathbb{Q}_p)$ is not compact. Let $U \subset H_Y(\mathbb{Q}_p)$ be a one-parameter unipontent subgroup. *Y* has large volume implies $\exists x, y \in Y$, $y = xg$, such that $|g|$ is bounded by some negative power of $vol(V)$, and $g \notin Stab(\mu_Y)$. Due to spectral gap, i.e. $\mathbb{H}(\mathbb{Q})$ action on $L^2(\mathbb{H}(\mathbb{Q})\backslash\mathbb{H}(\mathbb{A}))$ being $1/M$ tempered, most points on *Y* are effectively generic for U.

Now, by u_t action we get $g' \in \mathbb{G}$ such that $|\mu_Y(f) - \mu_Y^{g'}(f)|$ is bounded by a constant depending on *f* by a negative power of $vol(Y)$, In order to make $u_t^{-1}gu_t$ has size $O(1)$, we need to control p with regards to $vol(Y)$, which is accomplished by using the result of Prasad and Borel-Prasad: $1 = \tau(\mathbb{H}) = |\omega|(\mathbb{H}(\mathbb{Q}) \backslash \mathbb{H}(\mathbb{A}))D_F^{-\dim \mathbb{H}/2}$. Prasad gives a product formula for ω and Borel-Prasad studied L.