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Quantum ergodicity on manifolds (comparing < 0 curvature,
> 0 curvature and 0 curvature).

QE on large regular graphs.
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M a compact riemannian manifold, of dimension d .
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This question is linked with the ergodic theory for the geodesic
flow / billiard flow.
Hence the name quantum ergodicity.
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QE theorem (simplified) :

Theorem (Shnirelman, Zelditch, Colin de Verdière)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let a 2 C 0(M). Then
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Equivalently, there exists a subset S ⇢ N of density 1, such that
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in the weak topology.
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The full statement uses analysis on phase space, i.e.
T ⇤M = {(x , ⇠), x 2 M, ⇠ 2 T ⇤

x

M}.

For a = a(x , ⇠) a “reasonable” function on T ⇤M, we can define an
operator on L2(M),

a(x , D
x

)

Say a 2 S0(T ⇤M) if a is smooth and 0-homogeneous in ⇠ (i.e. a is
a smooth fn on the sphere bundle).
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Idea of proof.

For any bounded operator K on L2(M), define the quantum
variance

Var�(K ) =
1
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The proof start from the trivial observation that

Var�([
p
��, K ]) = 0

for any K .
In addition, if K = a(x , D

x

) is a pseudodi↵erential operator with
a 2 S0(T ⇤M), then

[
p
��, a(x , D

x

)] = (Xa)(x , D
x

) + b(x , D
x

)

where b is �1-homogeneous in ⇠ and X is the derivation along the
geodesic flow.
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This implies that

Var�((Xa)(x , D
x

)) �!
��!+1

0.

In addition,

Var�(a(x , D
x

))  C

Z

|⇠|=1
|a(x , ⇠)|2dxd⇠.

If the geodesic flow is ergodic, this implies

Var�(a(x , D
x

)) �!
��!+1

0

if a has zero mean.
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QUE conjecture :

Conjecture (Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the
whole sequence : h 

k

, a(x , D
x

) 
k

i
L

2(M) �!
R

|⇠|=1 a(x , ⇠)dxd⇠.

Proven by E. Lindenstrauss in the special case of arithmetic
congruence surfaces, for joint eigenfunctions of the Laplacian and
the Hecke operators.
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A-Nonnenmacher (06) proved a weaker statement valid in greater
generality.
Let M have negative curvature. Assume
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a(x , ⇠)dµ(x , ⇠)

Then µ must have positive Kolmogorov-Sinai entropy.
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The sphere.
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Flat tori

(Jakobson-Bourgain 97, Ja↵ard 90, A-Macià 2012)
It’s not possible for a sequence of eigenfunctions to concentrate on
a closed geodesic.

On each cylinder of periodic orbits, the limit measure must be
absolutely continuous.
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QE on discrete graphs

Since the 90s there has been the idea of using graphs as a testing
ground/toy model for quantum chaos.

Smilansky, Kottos, Alon,...
Keating, Berkolaiko, Winn, Piotet, Marklof...
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Here we focus on the case of large regular (discrete) graphs.
Let G

N

= (V
N

, E
N

) be a (q + 1)-regular graph of size N
(V

N

= {1, . . . , N}).

We look at the limit N �! +1.

We assume that G
N

has “few” short loops (= converges to a tree
in the sense of Benjamini-Schramm).
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Theorem

(A-Le Masson, 2013) Assume that G
N

has “few” short loops and
that it forms an expander family.

Let (�(N)
i

)N

i=1 be an ONB of eigenfunctions of the laplacian on G
N

.
Let a = a

N

: V
N

�! C be such that |a(x)|  1 for all x 2 V
N

.
Then
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������
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a(x)|�(N)
i
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������
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= 0.

• Also works on shrinking spectral intervals
• Applies to random regular graphs. In that case there also exists a
probabilistic proof (Geisinger 2013) in the case where a(x) is
chosen independently of G

N

.
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More general version

Theorem

(A-Le Masson, 2013) Assume that G
N

has “few” short loops and
that it forms an expander family.

Let (�(N)
i

)N

i=1 be an ONB of eigenfunctions of the laplacian on G
N

.
Let K

N
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⇥ V
N

�! C be a matrix such that
d(x , y) > D =) K
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Theorem

(Brooks-Lindenstrauss 2011) Assume that G
N

has “few” loops of
length  c log N.
For ✏ > 0, there exists � > 0 s.t. for every eigenfunction �,

B ⇢ V
N

,
X

x2B

|�(x)|2 � ✏ =) |B | � N�.

Proof also yields that k�k1  | log N|�1/4.
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Sketch of proof : 1) work with non-backtracking RW

instead of simple RW

G = (V , E ) graph, |V | = N, A : `2(V ) �! `2(V ) (self-adjoint)
defined by

Af (x) =
X

y⇠x

f (y).

Define B = set or oriented edges of G , and B : `2(B) �! `2(B) by

Bf (e) =
X

o(e0)=t(e),e0 6=ê

f (e 0).

Note that B is not self-adjoint but B = IB⇤I where I is the
edge-reversal involution

If (e) = f (ê).
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For regular graphs, the spectrum and eigenfunctions of B are
explicit in terms of those of A.

each eigenvalue � = 2
p

q cos(s ln q) (s 2 R [ iR) of A gives
rise to two eigenvalues q1/2±is of B.

The eigenfunction �
s

for A gives rise to the two
eigenfunctions of B,

f ±
s

(e) = �(t(e)) � 1

q1/2±is

�(o(e)).

the N(q � 1) other eigenvalues are ±1, each with multiplicity
N(q�1)

2 (rank of fundamental group of G �1).
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2) Definition of the quantum variance for the

non-backtracking operator

Consider K (e, e 0) : B ⇥ B �! C with the property that

K (e, e 0) 6= 0 =) 9k  D, Bk(e, e 0) 6= 0.

(K may be seen as a function on the set of geodesic segments of
length  D).
Define

Var(K ) =
1

N

NX

j=1

|hIf �
s

j

, Kf +
s

j

i|2.

This is built so that
Var([B, K ]) = 0

for all K .
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3) Dynamical interpretation

Notice that
[B, K ] = dK

(“derivative along geodesic flow”) and that

Var(K )  C
1

N

X

e,e0

|K (e, e 0)|2

if D  girth.

Uniform mixing of B on a family of graphs (=expanding property)
then implies that

Var(K
N

) �!
N�!1

0

if Tr(K
N

Bk) = 0 for all k .
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Perspectives

This method seems adaptable to

quotients (with large girth) of (F
d

, ha1, . . . , a
d

i) with weights
p(x , xa

i

) = p(a
i

) symmetric.

� + v , with v deterministic, having some kind of periodicity ;
probably also v(x) random iid (Anderson model).

some non-regular graphs ? ?

For a lot of graphs (not only regular ones) there is an explicit way
to transform solutions of

(� + v)� = ��

in `2(V ) to solutions of Bf = ↵�f in `2(B), where ↵� is a function
on B .

When you have a family of graphs and you need to control the
behaviour of the functions ↵�...
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