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Introduction.

e Quantum ergodicity on manifolds (comparing < 0 curvature,
> 0 curvature and O curvature).

e QE on large regular graphs.



Introduction.

M a compact riemannian manifold, of dimension d.

Avp = =Xy
[kl 2y =1

in the limit A\, — +oc.
We study the weak limits of the probability measures on M,

() |2 d Vol(x)

A — +o0.



Introduction.

This question is linked with the ergodic theory for the geodesic
flow 7 billiard flow.
Hence the name quantum ergodicity.



The Shnirelman theorem.

Let (v )ken be an orthonormal basis of L%(M), with
— At = Ak, Ak < Ak+1-

QE theorem (simplified) :

Theorem (Shnirelman, Zelditch, Colin de Verdiére)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let a € CO(M). Then

2
— 0.

/a(x)|¢k(x)|2dVoI(x)—/ a(x)dVol(x)
M

M

1
NGy 2

Ak <A




The Shnirelman theorem.

Equivalently, there exists a subset S C N of density 1, such that

/a(x)|¢k(x)|2dVoI(x)k€48>/ a(x)dVol(x).
M K—+00 JMm



The Shnirelman theorem.

Equivalently, there exists a subset S C N of density 1, such that

/a(x)|¢k(x)|2dVoI(x)k;S>/ a(x)dVol(x).
M K—+00 JMm

Equivalently,
[k (O 2d Vol(x) —X2 5 d\Vol(x)
k—+00

in the weak topology.



The Shnirelman theorem.

The full statement uses analysis on phase space, i.e.
T*M = {(x,£),x e M, £ € TAM}.

For a = a(x, &) a “reasonable” function on T *M, we can define an
operator on L?(M),
a(X1 DX)

Say a € SO(T*M) if a is smooth and 0-homogeneous in ¢ (i.e. a is
a smooth fn on the sphere bundle).



The Shnirelman theorem.

— Ay = A, Ak < Ak+1-
For a € SO(T*M), we consider

(Y, a(x, Dx)vk)L2(m)-



The Shnirelman theorem.

— Ay = A, Ak < Ak+1-
For a € SO(T*M), we consider

(Y, a(x, Dx)vk)L2(m)-

This amounts to |}, a(xX) |y (X)[?dVol(x) if a = a(x).



The Shnirelman theorem.

Let (¢ )ken be an orthonormal basis of L?(M), with
— Ay = Ak, Ak < Ak+1-

QE theorem :

Theorem (Shnirelman, Zelditch, Colin de Verdiére)

Assume that the action of the geodesic flow is ergodic for the
Liouville measure. Let a(x, &) € SY(T*M). Then

2
— 0.
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The Shnirelman theorem.
Idea of proof.

For any bounded operator K on L%(M), define the quantum
variance

Var\(K) = ﬁ Z |<¢k,K¢k>L2(M)|2-

Ak <A



The Shnirelman theorem.
Idea of proof.

For any bounded operator K on L%(M), define the quantum
variance

Var,(K) = ﬁ Z |<¢k, K¢k>L2(|\/|)|2-

Ak <A

The proof start from the trivial observation that
Var,([v—4A,K]) =0

for any K.



The Shnirelman theorem.
Idea of proof.

For any bounded operator K on L%(M), define the quantum
variance

Var,(K) = ﬁ Z |<wk, K¢k>L2(M)|2-

Ak <A
The proof start from the trivial observation that
Var,([v—4A,K]) =0

for any K.
In addition, if K = a(x, Dy) is a pseudodifferential operator with
a € SO(T*M), then

[\/1’ a(x, Dx)] = (Xa)(x, Dx) + b(x, Dx)

where b is —1-homogeneous in ¢ and X is the derivation along the
geodesic flow.



The Shnirelman theorem.

This implies that

Var, ((Xa)(x, Dy)) A: 0.



The Shnirelman theorem.

This implies that

Var, ((Xa)(x, Dy)) A: 0.

In addition,

Var,(a(x,Dy)) < C /If o la(x, &)|%dxd .



The Shnirelman theorem.

This implies that

Var, ((Xa)(x, Dy)) A: 0.

In addition,

Var,(a(x,Dy)) < C /If o la(x, &)|%dxd .

If the geodesic flow is ergodic, this implies

Vary(a(x, D)) — 0

if a has zero mean.
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Quantum unique ergodicity ?

QUE conjecture :

Conjecture (Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the
whole sequence : (Y, a(x, Dx)¥k) ey — Jfie=g a(X, E)dxd€.




Quantum unique ergodicity ?

QUE conjecture :

Conjecture (Rudnick, Sarnak 94)

On a negatively curved manifold, we have convergence of the
whole sequence : (Y, a(x, Dx)¥k) ey — Jfie=g a(X, E)dxd€.

Proven by E. Lindenstrauss in the special case of arithmetic
congruence surfaces, for joint eigenfunctions of the Laplacian and
the Hecke operators.



Quantum unique ergodicity ?

A-Nonnenmacher (06) proved a weaker statement valid in greater
generality.

Let M have negative curvature. Assume

Wk, a(X1 DX)¢k>L2(M) — =1 a(X’ S)d H(X1 5)

Then 1 must have positive Kolmogorov-Sinai entropy.



Other geometries
The sphere.



Other geometries
Flat tori

(Jakobson-Bourgain 97, Jaffard 90, A-Macia 2012)
It’s not possible for a sequence of eigenfunctions to concentrate on

a closed geodesic.

On each cylinder of periodic orbits, the limit measure must be
absolutely continuous.



QE on discrete graphs

QE on discrete graphs

Since the 90s there has been the idea of using graphs as a testing
ground/toy model for quantum chaos.

Smilansky, Kottos, Alon,...
Keating, Berkolaiko, Winn, Piotet, Marklof...



QE on discrete graphs

Here we focus on the case of large regular (discrete) graphs.
Let Gy = (VN, En) be a (g + 1)-regular graph of size N
(Vn =4{1,...,N}).

We look at the limit N — +oc.

We assume that Gy has “few” short loops (= converges to a tree
in the sense of Benjamini-Schramm).



QE on discrete graphs

Theorem

(A-Le Masson, 2013) Assume that Gy has “few” short loops and
that it forms an expander family.

Let (¢i('\'))}\':1 be an ONB of eigenfunctions of the laplacian on Gy.
Let a =an : VN — C be such that |a(x)| < 1 for all x € V.
Then

2

N
lim %Z ST a)leM )2 —a| =o.

N—+o00
I=1 [XeVpN

e Also works on shrinking spectral intervals

e Applies to random regular graphs. In that case there also exists a
probabilistic proof (Geisinger 2013) in the case where a(x) is
chosen independently of Gy.




QE on discrete graphs

More general version

Theorem

(A-Le Masson, 2013) Assume that Gy has “few” short loops and
that it forms an expander family.

Let (qbi(N))}\'zl be an ONB of eigenfunctions of the laplacian on Gy.
Let Ky @ VN X VN — C be a matrix such that

d(x,y) > D = Kn(X,y) = 0. Assume |Kn(X,y)| < 1. Then

lim L
N—s+0co N

N
(6™, ko™ R =o0.
=1

KN ) =) KOG Y)Ospn (A (X, Y)).
)Y



QE on discrete graphs

Theorem

(Brooks-Lindenstrauss 2011) Assume that Gy has “few” loops of
length < clogN.

For e > 0, there exists § > 0 s.t. for every eigenfunction ¢,

B CVn, ) () >e==|B] >N’
xeB

Proof also yields that ||¢||. < |log N|~1/4,



QE on discrete graphs

Sketch of proof : 1) work with non-backtracking RW

Instead of simple RW

G = (V,E) graph, V| =N, A: ?(V) — ¢?(V) (self-adjoint)
defined by

AFX) =3 F ).

y ~X



QE on discrete graphs

Sketch of proof : 1) work with non-backtracking RW

Instead of simple RW

G = (V,E) graph, V| =N, A: ?(V) — ¢?(V) (self-adjoint)
defined by

AFX) =3 F ).

y~X
Define B = set or oriented edges of G, and B : ¢?(B) — ¢*(B) by
Bf (e) = > 1)
o(e’)=t(e),e’#€

Note that B is not self-adjoint but B = IB*I where | is the
edge-reversal involution

If (e) = f ().



QE on discrete graphs

For regular graphs, the spectrum and eigenfunctions of B are
explicit in terms of those of A.

o each eigenvalue A = 2,/qcos(sInq) (s € RUIR) of A gives
rise to two eigenvalues q/2*s of B.

e the N(g — 1) other eigenvalues are %1, each with multiplicity
w (rank of fundamental group of G —1).



QE on discrete graphs

For regular graphs, the spectrum and eigenfunctions of B are
explicit in terms of those of A.

e each eigenvalue A = 2,/qcos(sInq) (s € RUIR) of A gives
rise to two eigenvalues q/2*s of B.
The eigenfunction ¢s for A gives rise to the two
eigenfunctions of B,

£ (e) = o(t(e)) - ql,%qs(o(e».

e the N(g — 1) other eigenvalues are %1, each with multiplicity
w (rank of fundamental group of G —1).



QE on discrete graphs

2) Definition of the quantum variance for the

non-backtracking operator

Consider K(e,e’) : B x B — C with the property that
K(e,e') # 0 = 3k < D,BX(e,e’) #0.

(K may be seen as a function on the set of geodesic segments of
length < D).
Define

N
Var (K) = Z (Ifg, Kf")

This is built so that
Var([B,K]) =0

for all K.



QE on discrete graphs

3) Dynamical interpretation

Notice that
[B,K] =dK

(“derivative along geodesic flow™) and that
1 2
Var(K) S C N ez(;, |K(e’ e/)l

if D < qirth.
Uniform mixing of B on a family of graphs (=expanding property)
then implies that
Var(Ky) — 0
N— o0

if Tr(KyBX) = 0 for all k.



QE on discrete graphs
Perspectives

This method seems adaptable to

e quotients (with large girth) of (Fq, (a1, ...,aq)) with weights
p(x, xaj) = p(aj) symmetric.

e A + v, with v deterministic, having some kind of periodicity;
probably also v(x) random iid (Anderson model).

@ some non-regular graphs??



QE on discrete graphs
Perspectives

This method seems adaptable to
e quotients (with large girth) of (Fq, (a1, ...,aq)) with weights
p(x,xa;) = p(aj) symmetric.
e A + v, with v deterministic, having some kind of periodicity;
probably also v(x) random iid (Anderson model).

@ some non-regular graphs??

For a lot of graphs (not only regular ones) there is an explicit way
to transform solutions of

(A+V)p= Ao

in ¢2(V) to solutions of Bf = a,f in £2(B), where « is a function
on B.



QE on discrete graphs
Perspectives

This method seems adaptable to
e quotients (with large girth) of (Fq, (a1, ...,aq)) with weights
p(x,xa;) = p(aj) symmetric.
e A + v, with v deterministic, having some kind of periodicity;
probably also v(x) random iid (Anderson model).

@ some non-regular graphs??

For a lot of graphs (not only regular ones) there is an explicit way
to transform solutions of

(A+V)p= Ao

in ¢2(V) to solutions of Bf = a,f in £2(B), where « is a function
on B.

When you have a family of graphs and you need to control the
behaviour of the functions «...



