Equidistribution of expanding translates of curves on homogeneous spaces and Diophantine approximation Joint with Nimish Shah

Lei Yang 1

¹Mathematical Sciences Research Institute

Advances in homogeneous dynamics, 2015

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

< 🗗 ▶

< □ ▶

▲ E ► < E ►</p>

クへで / 22

Outline

1 Introduction

- Motivation
- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

< 🗗 ►

< □ ▶

< E > < E >

クへで / 22

Ē

Outline

Motivation

- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

Ē

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Expanding horospherical subgroups and equidistribution

• Let G be a semisimple Lie group, and let Γ be a lattice of G. Then G/Γ admits a unique probability G-invariant measure, denoted by μ_G . Fix a diagonalizable one parameter subgroup $A = \{a(t) : t \in \mathbb{R}\} \subset G$, and let U_G^+ denote the expanding horospherical subgroup of the positive direction of A in G, i.e.,

$$U_G^+ := \left\{ g \in G : a(-t)ga(t)
ightarrow e ext{ as } t
ightarrow +\infty
ight\}.$$

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

< ∃→

< ∃ >

Expanding horospherical subgroups and equidistribution

Let G be a semisimple Lie group, and let Γ be a lattice of G. Then G/Γ admits a unique probability G-invariant measure, denoted by μ_G. Fix a diagonalizable one parameter subgroup A = {a(t) : t ∈ ℝ} ⊂ G, and let U⁺_G denote the expanding horospherical subgroup of the positive direction of A in G, i.e.,

$$U_G^+:=\{g\in G: a(-t)ga(t)
ightarrow e ext{ as } t
ightarrow +\infty\}$$
 .

Take an open subset Ω ⊂ U⁺_G and a point x = gΓ ∈ G/Γ, it is well known that the expanded translates {a(t)Ωx : t > 0} of Ωx by {a(t) : t > 0} tend to be equidistributed in G/Γ, as t → +∞. This follows from mixing of the action of A (Margulis' thesis).

Lei Yang (MSRI) Equidistribution of expanding translates of cu / 22

Curves in horospherical subgroups

• One could ask the following finer question: if Ω is a piece of a curve in U_G^+ , does the same equidistribution result hold?

Equidistribution of expanding translates of cu

クへで / 22

E

▲□▶ ▲ 国▶ ▲ 国▶

< □ ▶

Curves in horospherical subgroups

- One could ask the following finer question: if Ω is a piece of a curve in U_G^+ , does the same equidistribution result hold?
- Mixing of the action of A is insufficient for this problem.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

< □ >

< E ► < E ►

クへで / 22

General setting of the problem

Let *H* be a semisimple Lie group. Fix a diagonalizable one parameter subgroup $A = \{a(t) : t \in \mathbb{R}\} \subset H$. Let *G* be a Lie group containing *H*, and let Γ be a lattice of *G*. Let

$$\varphi: I = [a, b] \rightarrow U_H^+$$

be a piece of analytic curve in U_H^+ . Given a point $x = g\Gamma \in G/\Gamma$, Ratner's Theorem tells that the closure of Hx is a homogeneous subspace Fx, where F is a Lie subgroup of G containing H. One can ask whether the expanded curves $\{a(t)\varphi(I)x : t > 0\}$ tend to be equidistributed in Fx.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

《曰》《卽》 《臣》 《臣》

Outline

1 Introduction

- Motivation
- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

Ē

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

[Shah, 2009, Duke Math. Journal]: H = SO(n, 1), A = {a(t) : t ∈ ℝ} is a Cartan subgroup of H, G = SO(m, 1). It is proved that if under the natural visual map Vis : SO(n, 1) → ∂ℍⁿ, the image of the curve is not contained in a proper subsphere of ∂ℍⁿ, then the equidistribution holds.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

- [Shah, 2009, Duke Math. Journal]: H = SO(n, 1), A = {a(t) : t ∈ ℝ} is a Cartan subgroup of H, G = SO(m, 1). It is proved that if under the natural visual map Vis : SO(n, 1) → ∂ℍⁿ, the image of the curve is not contained in a proper subsphere of ∂ℍⁿ, then the equidistribution holds.
- [Yang, 2012]: H = SO(n, 1), A = {a(t) : t ∈ ℝ} is a Cartan subgroup of H, and general Lie group G. It is proved that the above result holds for general G.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

- 4 回 ト - 4 回 ト - 4 回 ト

[Shah, 2009, Inventiones Math.]: H = SL(n + 1, ℝ),
 A = {diag{e^{nt}, e^{-t}, ..., e^{-t}} : t ∈ ℝ} and general Lie group G. It is proved that if the curve is not contained in a proper affine hyperplane of U⁺_H = ℝⁿ, then the equidistribution holds.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

▲□▶ ▲ 国▶ ▲ 国▶

< □ ▶

- [Shah, 2009, Inventiones Math.]: H = SL(n + 1, ℝ),
 A = {diag{e^{nt}, e^{-t}, ..., e^{-t}} : t ∈ ℝ} and general Lie group G. It is proved that if the curve is not contained in a proper affine hyperplane of U⁺_H = ℝⁿ, then the equidistribution holds.
- [Shah, 2010, Journal of Amer. Math. Soc.]: H = SL(n + 1, ℝ), G general Lie group, A = {diag{e[∑]_{i=1}ⁿλ_it, e^{-λ₁t}, ..., e^{-λ_nt}} : t ∈ ℝ}, and the curve is restricted on the first row (the same as above). In this case, the same result as above holds.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

- 4 回 ト - 4 回 ト - 4 回 ト

- [Shah, 2009, Inventiones Math.]: H = SL(n + 1, ℝ),
 A = {diag{e^{nt}, e^{-t}, ..., e^{-t}} : t ∈ ℝ} and general Lie group G. It is proved that if the curve is not contained in a proper affine hyperplane of U⁺_H = ℝⁿ, then the equidistribution holds.
- [Shah, 2010, Journal of Amer. Math. Soc.]: H = SL(n + 1, ℝ), G general Lie group, A = {diag{e<sup>∑_{i=1}ⁿλ_it, e^{-λ₁t}, ..., e<sup>-λ_nt</sub>} : t ∈ ℝ}, and the curve is restricted on the first row (the same as above). In this case, the same result as above holds.
 </sup></sup>
- [Yang, 2013]: H = SL(2n, ℝ), A = diag{e^tI_n, e^{-t}I_n} and general Lie group G. It is proved that if the curve in U⁺_H satisfies some geometric conditions, then the equidistribution result holds.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

ㅁ > 《畵 > 《 글 > 《 글 >

Outline

1 Introduction

- Motivation
- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

Ę

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Our case

• In this talk, $H = \operatorname{SL}(m + n, \mathbb{R})$,

$$A:=\left\{a(t):=\begin{bmatrix}e^{nt}\mathrm{I}_m\\ e^{-mt}\mathrm{I}_n\end{bmatrix}:t\in\mathbb{R}\right\},$$

for $X \in \mathrm{M}(m imes n, \mathbb{R})$, denote

$$u(X) := \begin{bmatrix} \mathrm{I}_m & X \\ & \mathrm{I}_n \end{bmatrix},$$

then

$$U_{H}^{+} = \left\{ u(X) : X \in \mathrm{M}(m \times n, \mathbb{R}) \right\}.$$

G, Γ and $x = g\Gamma \in G/\Gamma$ are general. Without loss of generality, we may assume that Hx is dense in G/Γ .

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

₹

▲□▶ ▲□▶ ▲□▶ ▲□▶

Our case

• In this talk, $H = \operatorname{SL}(m + n, \mathbb{R})$,

$$A:=\left\{a(t):=\begin{bmatrix}e^{nt}\mathrm{I}_m\\ e^{-mt}\mathrm{I}_n\end{bmatrix}:t\in\mathbb{R}\right\},$$

for $X \in \mathrm{M}(m imes n, \mathbb{R})$, denote

$$u(X) := \begin{bmatrix} \mathrm{I}_m & X \\ & \mathrm{I}_n \end{bmatrix},$$

then

$$U_H^+ = \{u(X) : X \in \mathrm{M}(m \times n, \mathbb{R})\}.$$

G, Γ and $x = g\Gamma \in G/\Gamma$ are general. Without loss of generality, we may assume that Hx is dense in G/Γ .

• Considering a curve in U_H^+ is equivalent to considering a curve

$$\varphi: I = [a, b] \to \mathrm{M}(m \times n, \mathbb{R})$$

< ⊡ >

< □ >

< ≣ > < ≣ >

in the space of m by n matrices.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

Generic condition: m = n

$$\varphi: I = [a, b] \to \mathrm{M}(m \times n, \mathbb{R}).$$

For m = n, we say φ is *generic* if there exists a point $s_0 \in I$ such that $\varphi'(s_0)$ has full rank. Then there is a subinterval $J_{s_0} \subset I$ such that $\varphi(s) - \varphi(s_0)$ is invertible for all $s \in J_{s_0}$.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

Ę

< 日 > < 四 > < 回 > < 回 > < 回 > <

Generic: general case

$$\varphi: I = [a, b] \to \mathrm{M}(m \times n, \mathbb{R}).$$

For m < n, we rewrite φ(s) as [φ₁(s), φ₂(s)], where φ₁(s) is the first m by m block, and φ₂(s) is the rest m by n − m block. We say φ is generic if there exists a point s₀ and a subinterval J_{s0} ⊂ I such that φ₁(s) − φ₁(s₀) is invertible for s ∈ J_{s0}; and if we define

$$\psi: J_{s_0} \to \mathrm{M}(m \times (n-m), \mathbb{R})$$

by $\psi(s) = (\varphi_1(s) - \varphi_1(s_0))^{-1}(\varphi_2(s) - \varphi_2(s_0))$, then ψ is generic.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

< E > < E >

Generic: general case

$$\varphi: I = [a, b] \to \mathrm{M}(m \times n, \mathbb{R}).$$

For m < n, we rewrite φ(s) as [φ₁(s), φ₂(s)], where φ₁(s) is the first m by m block, and φ₂(s) is the rest m by n − m block. We say φ is generic if there exists a point s₀ and a subinterval J_{s0} ⊂ I such that φ₁(s) − φ₁(s₀) is invertible for s ∈ J_{s0}; and if we define

$$\psi: J_{s_0} \to \mathrm{M}(m \times (n-m), \mathbb{R})$$

by $\psi(s) = (\varphi_1(s) - \varphi_1(s_0))^{-1}(\varphi_2(s) - \varphi_2(s_0))$, then ψ is generic.

• For m > n, φ is called *generic* if its transpose

$$\varphi^{\mathrm{T}}: I = [a, b] \to \mathrm{M}(n \times m, \mathbb{R})$$

is generic.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

< E > < E >

Main result

Theorem (Nimish Shah and Lei Yang)

Let μ_t denote the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. If (m, n) = 1, then if an analytic curve $\varphi : I \to M(m \times n, \mathbb{R})$ is generic, then $\mu_t \to \mu_G$ as $t \to \infty$, i.e., $a(t)u(\varphi(I))x$ tends to be equidistributed in G/Γ as $t \to +\infty$.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

Main result

Theorem (Nimish Shah and Lei Yang)

Let μ_t denote the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. If (m, n) = 1, then if an analytic curve $\varphi : I \to M(m \times n, \mathbb{R})$ is generic, then $\mu_t \to \mu_G$ as $t \to \infty$, i.e., $a(t)u(\varphi(I))x$ tends to be equidistributed in G/Γ as $t \to +\infty$.

Remarks:

• For general (m, n), we need to define another geometric condition called *supergeneric*. If the curve is *supergeneric*, then the equidistribution result holds.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Main result

Theorem (Nimish Shah and Lei Yang)

Let μ_t denote the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. If (m, n) = 1, then if an analytic curve $\varphi : I \to M(m \times n, \mathbb{R})$ is generic, then $\mu_t \to \mu_G$ as $t \to \infty$, i.e., $a(t)u(\varphi(I))x$ tends to be equidistributed in G/Γ as $t \to +\infty$.

Remarks:

- For general (m, n), we need to define another geometric condition called *supergeneric*. If the curve is *supergeneric*, then the equidistribution result holds.
- In the case m = 1, the generic condition is equivalent to say that the curve is not contained in a proper affine subspace (the same condition as in [Shah, 2009, Inventiones Math.]).

```
Lei Yang (MSRI)
```

Equidistribution of expanding translates of cu

/ 22

Outline

1 Introduction

- Motivation
- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

Ę

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Our result in Diophantine approximation

Theorem (Shah and Yang)

If (m, n) = 1, and an analytic curve

$$\varphi: I = [a, b] \to \mathrm{M}(m \times n, \mathbb{R})$$

is generic, then almost every point on $\varphi(I)$, Dirichlet's Theorem is not improvable.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Our result in Diophantine approximation

Theorem (Shah and Yang)

If (m, n) = 1, and an analytic curve

$$\varphi: I = [a, b] \to \mathrm{M}(m \times n, \mathbb{R})$$

is generic, then almost every point on $\varphi(I)$, Dirichlet's Theorem is not improvable.

Remark: the correspondence between Diophantine approximation and homogeneous dynamics is due to [Dani, 1985, J. Reine Angew. Math.], [Kleinbock and Margulis, 1998, Annals of Math.] and [Kleinbock and Weiss, 2008, Journal of Modern Dynamics].

Outline

1 Introduction

- Motivation
- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSR	I)
---------------	----

Equidistribution of expanding translates of cu

クへで / 22

Ę

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Recall that μ_t denotes the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. Assume some limit measure μ_{∞} of $\{\mu_t : t \in \mathbb{R}\}$ is not the Haar measure μ_G .

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Recall that μ_t denotes the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. Assume some limit measure μ_{∞} of $\{\mu_t : t \in \mathbb{R}\}$ is not the Haar measure μ_G .

 Shah [Shah, 2009, Duke Math. Journal] proved that after some modification, any limit measure of {μ_t : t > 0} is invariant under some unipotent subgroup W of H.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Recall that μ_t denotes the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. Assume some limit measure μ_{∞} of $\{\mu_t : t \in \mathbb{R}\}$ is not the Haar measure μ_G .

- Shah [Shah, 2009, Duke Math. Journal] proved that after some modification, any limit measure of {μ_t : t > 0} is invariant under some unipotent subgroup W of H.
- This will allow us to apply Ratner's theorem on classification of finite measures invariant under a unipotent flow.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

/ 22

◆□▶ ◆□▶ ◆ □▶ ◆ □▶

Recall that μ_t denotes the normalized Lebesgue measure on the curve $a(t)u(\varphi(I))x$. Assume some limit measure μ_{∞} of $\{\mu_t : t \in \mathbb{R}\}$ is not the Haar measure μ_G .

- Shah [Shah, 2009, Duke Math. Journal] proved that after some modification, any limit measure of {µ_t : t > 0} is invariant under some unipotent subgroup W of H.
- This will allow us to apply Ratner's theorem on classification of finite measures invariant under a unipotent flow.
- The *linearization technique* allows us to translate everything to a linear representation V of G, and conclude that there is a nonzero vector v ∈ V, such that

$$u(\varphi(s))v \in V^{-}(A) + V^{0}(A).$$

Here the decomposition $V = V^+(A) + V^0(A) + V^-(A)$ is according to the eigenspaces of the action of A.

Lei Yang (MSRI) Equidistribution of expanding translates of cu

Outline

1 Introduction

- Motivation
- Related results
- Summary of the result
- Applications to Diophantine approximation

2 Sketch of the proof

- Ideas to study the limit measures
- From algebra to geometry

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

Ę

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

Assume that $\varphi(s_0) = \mathbf{0}$ and $v \in V^-(A) + V^0(A)$. Let $\varphi(s) = [\varphi_1(s), \varphi_2(s)], \ \psi(s) = \varphi_1^{-1}(s)\varphi_2(s)$. Denote

$$u'(\psi(s)) := egin{bmatrix} \mathrm{I}_m & \psi(s) \ & \mathrm{I}_{n-m} \end{bmatrix}, \ \mathcal{A}' := \left\{ egin{array}{cc} a'(t) := egin{bmatrix} \mathrm{I}_m & e^{(n-m)t}\mathrm{I}_m & e^{-mt}\mathrm{I}_{n-m} \end{bmatrix} : t \in \mathbb{R}
ight\}.$$

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

クへで / 22

Ę

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

< □ ▶

The proof goes as follows:

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

< □ ▶

< 🗗 ▶

< E > < E >

Ē

The proof goes as follows:

• Take the highest eigenspace projection v_{μ} of v.

Lei	Yang	(MSRI
		· -

Equidistribution of expanding translates of cu

• • •

< 🗗 ►

< E > < E >

クへで / 22

The proof goes as follows:

- Take the highest eigenspace projection v_{μ} of v.
- Prove that

$$u'(\psi(s))v_{\mu}\in V^{-}(A')+V^{0}(A')$$

for all $s \in J_{s_0}$. This follows a basic lemma on $SL(2, \mathbb{R})$ representations proved by Shah [Shah, 2009, Duke Math. Journal] and direct calculation.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

< □ >

< E > < E >

/ 22

The proof goes as follows:

- Take the highest eigenspace projection v_{μ} of v.
- Prove that

$$u'(\psi(s))v_{\mu}\in V^{-}(A')+V^{0}(A')$$

for all $s \in J_{s_0}$. This follows a basic lemma on $SL(2, \mathbb{R})$ representations proved by Shah [Shah, 2009, Duke Math. Journal] and direct calculation.

• Apply induction.

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

< ⊡ >

< E > < E >

/ 22

Thank you!

Lei Yang (MSRI)

Equidistribution of expanding translates of cu

Ē

▲ □ ▶ ▲ 酉 ▶ ▲ 亘 ▶