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Expanding horospherical subgroups and equidistribution

Let G be a semisimple Lie group, and let � be a lattice of G . Then
G/� admits a unique probability G -invariant measure, denoted by µG .
Fix a diagonalizable one parameter subgroup A = {a(t) : t 2 R} ⇢ G ,
and let U+

G denote the expanding horospherical subgroup of the
positive direction of A in G , i.e.,

U+

G := {g 2 G : a(�t)ga(t) ! e as t ! +1} .

Take an open subset ⌦ ⇢ U+

G and a point x = g� 2 G/�, it is well
known that the expanded translates {a(t)⌦x : t > 0} of ⌦x by
{a(t) : t > 0} tend to be equidistributed in G/�, as t ! +1. This
follows from mixing of the action of A (Margulis’ thesis).
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Curves in horospherical subgroups

One could ask the following finer question: if ⌦ is a piece of a curve
in U+

G , does the same equidistribution result hold?

Mixing of the action of A is insu�cient for this problem.
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General setting of the problem

Let H be a semisimple Lie group. Fix a diagonalizable one parameter
subgroup A = {a(t) : t 2 R} ⇢ H. Let G be a Lie group containing H,
and let � be a lattice of G .
Let

' : I = [a, b] ! U+

H

be a piece of analytic curve in U+

H . Given a point x = g� 2 G/�, Ratner’s
Theorem tells that the closure of Hx is a homogeneous subspace Fx ,
where F is a Lie subgroup of G containing H. One can ask whether the
expanded curves {a(t)'(I )x : t > 0} tend to be equidistributed in Fx .
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Related results

[Shah, 2009, Duke Math. Journal]: H = SO(n, 1), A = {a(t) : t 2 R}
is a Cartan subgroup of H, G = SO(m, 1). It is proved that if under
the natural visual map Vis : SO(n, 1) ! @Hn, the image of the curve
is not contained in a proper subsphere of @Hn, then the
equidistribution holds.

[Yang, 2012]: H = SO(n, 1), A = {a(t) : t 2 R} is a Cartan subgroup
of H, and general Lie group G . It is proved that the above result
holds for general G .
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Related results

[Shah, 2009, Inventiones Math.]: H = SL(n + 1,R),
A = {diag{ent , e�t , . . . , e�t} : t 2 R} and general Lie group G . It is
proved that if the curve is not contained in a proper a�ne hyperplane
of U+

H = Rn, then the equidistribution holds.

[Shah, 2010, Journal of Amer. Math. Soc.]: H = SL(n + 1,R), G
general Lie group, A = {diag{e

Pn
i=1

�i t , e��
1

t , . . . , e��nt} : t 2 R},
and the curve is restricted on the first row ( the same as above). In
this case, the same result as above holds.

[Yang, 2013]: H = SL(2n,R), A = diag{etIn, e�tIn} and general Lie
group G . It is proved that if the curve in U+

H satisfies some geometric
conditions, then the equidistribution result holds.
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Our case

In this talk, H = SL(m + n,R),

A :=

⇢
a(t) :=


entIm

e�mtIn

�
: t 2 R

�
,

for X 2 M(m ⇥ n,R), denote

u(X ) :=


Im X

In

�
,

then
U+

H = {u(X ) : X 2 M(m ⇥ n,R)} .
G , � and x = g� 2 G/� are general. Without loss of generality, we
may assume that Hx is dense in G/�.

Considering a curve in U+

H is equivalent to considering a curve

' : I = [a, b] ! M(m ⇥ n,R)

in the space of m by n matrices.
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Generic condition: m = n

' : I = [a, b] ! M(m ⇥ n,R).

For m = n, we say ' is generic if there exists a point s
0

2 I such that
'

0
(s

0

) has full rank.Then there is a subinterval Js
0

⇢ I such that
'(s)� '(s

0

) is invertible for all s 2 Js
0

.
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Generic: general case

' : I = [a, b] ! M(m ⇥ n,R).

For m < n, we rewrite '(s) as
⇥
'
1

(s), '
2

(s)
⇤
, where '

1

(s) is the
first m by m block, and '

2

(s) is the rest m by n�m block. We say '
is generic if there exists a point s

0

and a subinterval Js
0

⇢ I such that
'
1

(s)� '
1

(s
0

) is invertible for s 2 Js
0

; and if we define

 : Js
0

! M(m ⇥ (n �m),R)

by  (s) = ('
1

(s)� '
1

(s
0

))�1('
2

(s)� '
2

(s
0

)), then  is generic.

For m > n, ' is called generic if its transpose

'T : I = [a, b] ! M(n ⇥m,R)

is generic.
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Main result

Theorem (Nimish Shah and Lei Yang)

Let µt denote the normalized Lebesgue measure on the curve
a(t)u('(I ))x . If (m, n) = 1, then if an analytic curve ' : I ! M(m⇥ n,R)
is generic, then µt ! µG as t ! 1, i.e., a(t)u('(I ))x tends to be
equidistributed in G/� as t ! +1.

Remarks:

For general (m, n), we need to define another geometric condition
called supergeneric. If the curve is supergeneric, then the
equidistribution result holds.

In the case m = 1, the generic condition is equivalent to say that the
curve is not contained in a proper a�ne subspace (the same condition
as in [Shah, 2009, Inventiones Math.]).
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Our result in Diophantine approximation

Theorem (Shah and Yang)

If (m, n) = 1, and an analytic curve

' : I = [a, b] ! M(m ⇥ n,R)

is generic, then almost every point on '(I ), Dirichlet’s Theorem is not
improvable.

Remark: the correspondence between Diophantine approximation and
homogeneous dynamics is due to [Dani, 1985, J. Reine Angew. Math.],
[Kleinbock and Margulis, 1998, Annals of Math.] and [Kleinbock and
Weiss, 2008, Journal of Modern Dynamics].
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Ratner’s theorem and Linearization technique

Recall that µt denotes the normalized Lebesgue measure on the curve
a(t)u('(I ))x . Assume some limit measure µ1 of {µt : t 2 R} is not the
Haar measure µG .

Shah [Shah, 2009, Duke Math. Journal] proved that after some
modification, any limit measure of {µt : t > 0} is invariant under
some unipotent subgroup W of H.

This will allow us to apply Ratner’s theorem on classification of finite
measures invariant under a unipotent flow.

The linearization technique allows us to translate everything to a
linear representation V of G , and conclude that there is a nonzero
vector v 2 V , such that

u('(s))v 2 V�(A) + V 0(A).

Here the decomposition V = V+(A) + V 0(A) + V�(A) is according
to the eigenspaces of the action of A.
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From algebra to geometry

Assume that '(s
0

) = 0 and v 2 V�(A) + V 0(A). Let
'(s) = ['

1

(s),'
2

(s)],  (s) = '�1

1

(s)'
2

(s). Denote

u0( (s)) :=

2

4
Im

Im  (s)
In�m

3

5 ,

A0 :=

8
<

:a0(t) :=

2

4
Im

e(n�m)tIm
e�mtIn�m

3

5 : t 2 R

9
=

; .
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From algebra to geometry

The proof goes as follows:

Take the highest eigenspace projection vµ of v .

Prove that
u0( (s))vµ 2 V�(A0) + V 0(A0)

for all s 2 Js
0

. This follows a basic lemma on SL(2,R)
representations proved by Shah [Shah, 2009, Duke Math. Journal]
and direct calculation.

Apply induction.
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Thank you!
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