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Singular systems

On Euclidean space we fix the maximum norm || - ||.

Theorem (Dirichlet's theorem for linear forms)

Let m,n € N be given. For any m x n real matrix s and any N € N there
exist q € Z" and p € Z™ such that

1
— and 0 < [|q| < N.

We say that the matrix s € M, , is a singular system of m linear forms
in n variables if for any € > 0 there exists Ny € N such that for any
N > Ny there exist q € Z" and p € Z™ such that

€

Nn/m

Isq —p| < and 0 < ||qf| < N.

Shirali Kadyrov (Astana) Entropy & Singular Systems May 2015 2/11




Singular systems

Theorem (KKLM'14)

The Hausdorff dimension of the set of s € My, , which are singular is at

__ _mn
most mn pr

When m + n = 3 it was shown by Y. Cheung (2011) that the Hausdorff
dimension of the set of singular pairs is 4/3. Recently Y. Cheung and

N. Chevallier (2014) showed that the set of singular m-vectors (n = 1) has

. . .
Hausdorff dimension m — r——

Conjecture. The above theorem is sharp for m+ n > 3.
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Dani’s correspondence

Fix any t > 0 and consider the dynamical system (X1, g¢), with the
action given by
8t - X = 8tX,
where
Xmtn = SL(m+ n,R)/SL(m+ n,Z)

and

e A nt nt _—mt —mt
gt := diag(e™,...,e", e” ™M . e” ™).

The unstable horospherical subgroup U with respect to g; can be
identified with the space My, , of m X n real matrices:

U={us:s € Mpnn} where us := (Ig IS) :

Dani’s correspondence: s is a singular system of m linear forms in n
variables if and only if gyusSL(m + n,Z) — oo in Xpyn as £ — oo.
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Entropy in the cusp

Theorem (KKLM'14)

For every sufficiently large integer t > O there exists a compact subset
Q = Q(t) of Xpyn such that

|
hﬂ(gl) < (m—}—n_ 1‘|‘,U(Q))mn—|- 3 (Z-gt'7

for any gi-invariant probability measure yn on Xpip.

v

Corollary

For any h > 0 and any sequence (px)k>1 of gi-invariant probability
measures on Xm4, with entropies h,, (g1) > h, any weak® limit ;1 of the
sequence satisfies

h
anZ__ —1).
p(Ximsn) = — = (m+n = 1)

V.
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Entropy in the cusp

Conjecture. For any constant h € [O, (m+ n)mn} there should exists a
sequence of probability invariant measures (fux)k>1 with limg hy,, (g1) = h
such that the limit measure pu satisfies

Omi) =max{ L (m )+ 1, 0|

mn

It is known to be true when min(m, n) =1, (K.'11).
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To prove the main results

The main results follow from the following.

Theorem

For sufficiently large t there are ‘nice’ compact sets Q in Xy, such that
for any x € Q, N € N, and § € (0,1) the set

{uEBlu:%HEE{l,...,N}:ggtung}‘25}

can be covered with t3Ne(m+n=8)mntN poys in U of radius e~ (m+mtN
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Method of the proof is based on integral inequalities developed by

A. Eskin, G.A. Margulis and S. Mozes (1998). They show that there exists
a positive continuous height function o : X;;4p — R with a(x) — oo as

X — 00 in Xpmyp and a constant ¢ > 0 such that

/ a(grkx)dk < ca(x) + B,
K

for some constant B, where K = SO(m) x SO(n).
We show that there exists a positive continuous height function
a : Xmen — R with a(x) = 00 as x — 00 in X1 such that

/ a(gekx)dk < Pe~™ta(x) + B,
K

for some constant B, where K = SO(m + n).
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Height function

Step 1. (Choosing exponents, 3;’s) Forany i € {1,...,m+n—1} and
decomposable v € A\' R™*"

/K lgekv]| =% dk < 2e=™ v ],

where i = Z if i< mand f; = —— if i >m.

m—+n—i
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Height function

Step 2. (Choosing weights, w;’s) For any i =1,...., m+ n and any
X € Xm+n we let Fi(x) denote the set of all i-dimensional subgroups of x.
For any L € Fi(x) we let ||L|| denote the volume of L/(L N x). We define

0i(x) = max {ﬁ L e F,-(x)} |

Clearly, amyn(x) =1 and for convenience let ag(x) := 1 for all x € Xp1p.
For a fixed t > 0, there exist constants wyg, . ..,wWm+n such that

/ agekx) dk < t2e™ M a(x),
K

for a(x) large, where
m-+n

o= E weary '
i=0
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Thank You!
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