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Singular systems

On Euclidean space we fix the maximum norm k · k.

Theorem (Dirichlet’s theorem for linear forms)

Let m, n 2 N be given. For any m ⇥ n real matrix s and any N 2 N there
exist q 2 Zn and p 2 Zm such that

ksq� pk <
1

Nn/m
and 0 < kqk < N.

We say that the matrix s 2 Mm,n is a singular system of m linear forms

in n variables if for any ✏ > 0 there exists N
0

2 N such that for any
N > N

0

there exist q 2 Zn and p 2 Zm such that

ksq� pk <
✏

Nn/m
and 0 < kqk < N.
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Singular systems

Theorem (KKLM’14)

The Hausdor↵ dimension of the set of s 2 Mm,n which are singular is at
most mn � mn

m+n .

When m + n = 3 it was shown by Y. Cheung (2011) that the Hausdor↵
dimension of the set of singular pairs is 4/3. Recently Y. Cheung and
N. Chevallier (2014) showed that the set of singular m-vectors (n = 1) has
Hausdor↵ dimension m � m

m+1

.

Conjecture. The above theorem is sharp for m + n � 3.
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Dani’s correspondence

Fix any t > 0 and consider the dynamical system (Xm+n, gt), with the
action given by

gt · x = gtx ,

where
Xm+n := SL(m + n,R)/SL(m + n,Z)

and
gt := diag(ent , ..., ent , e�mt , ..., e�mt).

The unstable horospherical subgroup U with respect to gt can be
identified with the space Mm,n of m ⇥ n real matrices:

U = {us : s 2 Mm,n} where us :=

✓
Im s
0 In

◆
.

Dani’s correspondence: s is a singular system of m linear forms in n
variables if and only if g`tusSL(m + n,Z) ! 1 in Xm+n as ` ! 1.
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Entropy in the cusp

Theorem (KKLM’14)

For every su�ciently large integer t > 0 there exists a compact subset
Q = Q(t) of Xm+n such that

hµ(g1) 
�
m + n � 1 + µ(Q)

�
mn +

3 log t

t
,

for any g
1

-invariant probability measure µ on Xm+n.

Corollary

For any h > 0 and any sequence (µk)k�1

of g
1

-invariant probability
measures on Xm+n with entropies hµk (g1) � h, any weak⇤ limit µ of the
sequence satisfies

µ(Xm+n) �
h

mn
� (m + n � 1) .
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Entropy in the cusp

Conjecture. For any constant h 2
⇥
0, (m + n)mn

⇤
there should exists a

sequence of probability invariant measures (µk)k�1

with limk hµk (g1) = h
such that the limit measure µ satisfies

µ(Xm+n) = max

⇢
h

mn
� (m + n) + 1, 0

�

It is known to be true when min(m, n) = 1, (K.’11).
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To prove the main results

The main results follow from the following.

Theorem

For su�ciently large t there are ‘nice’ compact sets Q in Xm+n such that
for any x 2 Q, N 2 N, and � 2 (0, 1) the set

⇢
u 2 BU

1

:
1

N

���` 2 {1, . . . ,N} : g`tux 62 Q
 �� � �

�

can be covered with t3Ne(m+n��)mntN balls in U of radius e�(m+n)tN .
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Main idea

Method of the proof is based on integral inequalities developed by
A. Eskin, G.A. Margulis and S. Mozes (1998). They show that there exists
a positive continuous height function ↵ : Xm+n ! R with ↵(x) ! 1 as
x ! 1 in Xm+n and a constant c > 0 such that

Z

K
↵(gtkx)dk  c↵(x) + B ,

for some constant B , where K = SO(m)⇥ SO(n).
We show that there exists a positive continuous height function
↵ : Xm+n ! R with ↵(x) ! 1 as x ! 1 in Xm+n such that

Z

K
↵(gtkx)dk  t2e�mnt↵(x) + B ,

for some constant B , where K = SO(m + n).
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Height function

Step 1. (Choosing exponents, �i ’s) For any i 2 {1, . . . ,m + n � 1} and
decomposable v 2

Vi Rm+n

Z

K
kgtkvk��i dk  t2e�mntkvk��i ,

where �i =
m
i if i  m and �i =

n
m+n�i if i > m.
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Height function

Step 2. (Choosing weights, !i ’s) For any i = 1, . . . ,m + n and any
x 2 Xm+n we let Fi (x) denote the set of all i-dimensional subgroups of x .
For any L 2 Fi (x) we let kLk denote the volume of L/(L \ x). We define

↵i (x) := max

⇢
1

kLk : L 2 Fi (x)

�
.

Clearly, ↵m+n(x) = 1 and for convenience let ↵
0

(x) := 1 for all x 2 Xm+n.
For a fixed t > 0, there exist constants !

0

, . . . ,!m+n such that
Z

K
↵(gtkx) dk  t2e�mnt↵(x),

for ↵(x) large, where

↵ :=
m+nX

i=0

!`↵
�i
` .
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Thank You!
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