
1. Randomness in Diophantine approximation

Joint work with Ghosh.

Counting lattice points in a region: Theorem (Schmidt) ⌦
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The naive heuristics of the above result is as follows: ⌦
T

= q⌦
i

, |⌦
i

| ⇠ 1, then the
expected number of lattice points in each ⌦

i

is about |⌦
i

|. If they behaves as if they are
independent, there should be a central limit theorem-like result.

Example: When ⌦
T

is chosen to be rational ellipses of size T , Landraw and Walfize
showed that the error term for #(Zd \ ⌦

T

) is O(T d�2), which is the best possible result.
The error term comes from the O(T d�1) unit cubes that touch the boundary of the ellipse,
which behave with some kind of “independence”.

Conjecture (Gotze) for a.e. unimodular lattices the above is true for error O(T
d�1
2 +✏.

Relationship with Diophantine approximation:

Let A : Rm+n ! Rn, ⌦
T

= {x|||Ax||  ||x||�
m
n , 1  ||x||  T}.

Theorem (G-G) If m + n � 3, then 9� > 0, (1) the volume of unimodular lattices in
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Idea of the proof: decompose ⌦
T

= {(u, v) 2 Rn+m|||u||  c||v||�m/n, 1  ||v||  T} into
regions where ||v|| is between 1 and 2, 2 and 4, 4 and 8 etc. Each of these cylindrical region is

obtained by a linear transformation a = diag(2
m
n I
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I
m

) from the first one, denoted as ⌦
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Now use Siegel transform: #(⇤ \ ⌦
2

k) =
P

k�1

i

P
x2⇤ �

⌦0(a
ix) =

P
i

ˆ�
⌦0(⇤).

Theorem: T : X ! X partially hyperbolic di↵eomorphism with some kind of mixing,
f a Hölder function on X with compact support, and is not a coboundary (f 6= gT � g),
then the average of f(T jX) satisfies central limit theorem.
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However, the Siegel transform is not smooth nor bounded. However, it is in L2 when
dimension � 3.

The proof is similar to central limit theorem:

Theorem (Goedin) T : (X,µ) ! (X,µ), invertable, measure-preserving, and there is a
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f(T ix) ⇠ N (0,�).

To construct these C
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To deal with some badly behaved parts, fix ⇢ < 1, let X(⌘) = {x 2 X|Bu
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