1. RANDOMNESS IN DIOPHANTINE APPROXIMATION

Joint work with Ghosh.

Counting lattice points in a region: Theorem (Schmidt) Ω_T is an increasing family of Borel sets in \mathbb{R}^d of finite measure, the volume $|\Omega_T| \to \infty$ as $T \to \infty$. Then, for a.e. unimodular lattice in \mathbb{R}^d , $\#(\Lambda \cap \Omega_T) \sim |\Omega_T| + \begin{cases} O_\Lambda(|\Omega_T|^{\frac{1}{2}}(\log |\Omega_T|)^{\frac{3}{2}+\epsilon} & d \geq 3\\ O_\Lambda(|\Omega_T|^{\frac{1}{2}}(\log |\Omega_T|)^{\frac{5}{2}+\epsilon} & d = 2 \end{cases}$.

The naive heuristics of the above result is as follows: $\Omega_T = \amalg \Omega_i$, $|\Omega_i| \sim 1$, then the expected number of lattice points in each Ω_i is about $|\Omega_i|$. If they behaves as if they are independent, there should be a central limit theorem-like result.

Example: When Ω_T is chosen to be rational ellipses of size T, Landraw and Walfize showed that the error term for $\#(\mathbb{Z}^d \cap \Omega_T)$ is $O(T^{d-2})$, which is the best possible result. The error term comes from the $O(T^{d-1})$ unit cubes that touch the boundary of the ellipse, which behave with some kind of "independence".

Conjecture (Gotze) for a.e. unimodular lattices the above is true for error $O(T^{\frac{d-1}{2}+\epsilon})$.

Relationship with Diophantine approximation:

Let
$$A : \mathbb{R}^{m+n} \to \mathbb{R}^n$$
, $\Omega_T = \{x | ||Ax|| \le ||x||^{-\frac{m}{n}}, 1 \le ||x|| \le T \}.$

Theorem (G-G) If $m + n \ge 3$, then $\exists \sigma > 0$, (1) the volume of unimodular lattices in \mathbb{R}^{n+m} such that $\frac{\#(\Lambda \cap \Omega_T) - |\Omega_T|}{|\Omega_T^{1/2}|} \in (a, b)$ converges to the probability of a random variable

$$\sim \mathcal{N}(0,\sigma^2) \text{ lies in } (a,b), \text{ as } T \to \infty. (2) \limsup_{T \to \infty} \frac{\#(\Lambda \cap \Omega_T) - |\Omega_T|}{|\Omega_T|^{\frac{1}{2}} (\log \log |\Omega_T|)^{\frac{1}{2}}} = \sqrt{2}\sigma$$

When $m + n = 2$, replace $\frac{\#(\Lambda \cap \Omega_T) - |\Omega_T|}{|\Omega_T^{1/2}|}$ with $\frac{\#(\Lambda \cap \Omega_T) - \zeta(2)^{-1} |\Omega_T|}{|\Omega_T^{1/2}|}$.

Idea of the proof: decompose $\Omega_T = \{(u, v) \in \mathbb{R}^{n+m} |||u|| \le c||v||^{-m/n}, 1 \le ||v|| \le T\}$ into regions where ||v|| is between 1 and 2, 2 and 4, 4 and 8 etc. Each of these cylindrical region is obtained by a linear transformation $a = diag(2^{\frac{m}{n}}I_n, \frac{1}{2}I_m)$ from the first one, denoted as Ω_0 .

Now use Siegel transform:
$$\#(\Lambda \cap \Omega_{2^k}) = \sum_{i=1}^{k-1} \sum_{x \in \Lambda} \chi_{\Omega_0}(a^i x) = \sum_i \hat{\chi}_{\Omega_0}(\Lambda).$$

Theorem: $T: X \to X$ partially hyperbolic diffeomorphism with some kind of mixing, f a Hölder function on X with compact support, and is not a coboundary $(f \neq gT - g)$, then the average of $f(T^jX)$ satisfies central limit theorem.

However, the Siegel transform is not smooth nor bounded. However, it is in L^2 when dimension ≥ 3 .

The proof is similar to central limit theorem:

Theorem (Goedin) $T: (X,\mu) \to (X,\mu)$, invertable, measure-preserving, and there is a filtration of σ -algebras $\mathcal{C}_n \subset \mathcal{C}_{n+1}$, related by T^{-1} , $f \in L^2$ with 0 average, such that (1) $\sigma^2 = \sum_{i \in \mathbb{Z}} (T^i f, f) \in (0,\infty)$, and (2) $\sum_{i>0} ||E(f|\mathcal{C}_n) - f||_2 < \infty$, $\sum_{i>0} ||E(f|\mathcal{C}_n)||_2 < \infty$, then $\frac{1}{\sqrt{n}} \sum_{i=1}^n f(T^i x) \sim \mathcal{N}(0,\sigma)$.

To construct these C_n , let Q be a partition of X, $P(x) = Q(x) \cap W_a^u(x)$, and $C_n(x) = \bigcap_{i=-n}^{\infty} a^i P(a^{-i}x)$.

To deal with some badly behaved parts, fix $\rho < 1$, let $X(\eta) = \{x \in X | B^u_{\eta \rho^k}(a^{-k}x) \subset C_0(a^{-k}x), \forall k \ge 0\}$. $\mu(X - X(\eta)) << \eta^c$, hence, $E(f|\mathcal{C}_n) = \frac{1}{m^u(a^{-n}\mathcal{C}_0(a^nx))} \int_{\mathcal{C}_0(a^nx)} f(y) dm^u(y)$.