1. Effective density of unipotent orbits

Joint work with Margulis, Muhammadi, Shah.

Theorem (conjectured by Raghunathan, proved by Ratner) G Lie group, Γ a lattice, $H \subset G$ closed subgroups generated by Ad-unipotent subgroups, then $\exists x \in G/\Gamma$ such that $\overline{Hg} = L[g]$ for some connected subgroup L.

Lx is called periodic if $Stab_Lx$ is discrete of finite covolume. Various special cases were proved by Dani, Margulis, Shah etc.

Similar result is true for algebraic group G_S over \mathbb{Q}_S where S is a finite collection of places. This is proved by Ratner, Margulis, Tomanov.

Arithmetic case: G linear algebraic group defined over \mathbb{Q} , no \mathbb{Q} -char, view it as embedded in the set of *n*-by-*n* matrices. Let S be a finite set of places, ∞ included, $\mathbb{G} = \prod_{v \in s} G_v$, $\Gamma \subset \mathbb{G}(\mathbb{Z}_S)$ of finite index, H generated by 1 parameter unipotent group.

Theorem (Tomanov) $\overline{H[g]} = gL^0[e], L^0$ fin. index of some $\mathbb{L}(\mathbb{Q}_S)$, for some \mathbb{L} defined over \mathbb{Q} generated by unipotents.

From Ratner's theorem, $f \in C_c(G/\Gamma)$, then $\lim_{T\to\infty} \int_0^T f(u_t[g])dt = \int_{L[g]} f$. Question: how fase does it converge in non-horospherical case? (horospherical case is known)

Example: $G = SL(2, \mathbb{R}), \Gamma = SL(2, \mathbb{Z})$. A big horocycle in a tube of periodic orbit \rightarrow goes away \rightarrow becomes equidistributed.

Let \mathbb{G} linear algebraic group over \mathbb{Q} semisimple, $\mathbb{G} = \mathbb{G}(\mathbb{R})^0$, Γ arithematic lattice in G, α a height of G/Γ induced by the map into $SL_N/SL_N(\mathbb{Z})$. $K_R = \{[g] \in G/\Gamma, \alpha(g) \leq R\}$, \mathbb{H} defined over \mathbb{Q} , let $\mathcal{O}_{\mathbb{H}} \in \wedge^{dim\mathbb{H}}\}$, $hgt(\mathcal{H})$ is defined as $||\mathcal{O}||_{\infty}$, $\hat{\mathcal{O}} = \mathcal{O}/hgt$.

Theorem (MMSL): u_t is a 1-parameter unipotent in a real algebraic normal subgroup L < G, u_t has a dense orbit in G/Γ , $\forall T > R > 0$, $[g] \in K_R$, then either:

(1) $\exists \mathcal{H} < \mathcal{G}$ of class \mathcal{H} , not normal in \mathcal{G} , with height less than R s.t. $\exists \gamma \in \Gamma$, $||u_t g \gamma \hat{\mathcal{O}}_{\mathbb{H}}|| < R, \forall |t| < T$. (i.e. orbit is trapped in a tube for a long time.)

(2) $\{u_t[g] : |t| < T\}$ is $1/\phi(g)$ -dense, where $\phi = c \log \log \ldots \log t$, and there are 2(rkL + du(L)) many log. du is the dimension of the largest unipotent subgroup.

Proof is based on Dani-Margulis.