1. RANDOM DYNAMICS AND A FORMULA FOR FURSTENBERG, KULLBACK-LEDRAPPIER ENTROPY

Joint work with Brown.

Problem: understand the existence and properties of invariant measure under Γ (a free group of 2 elements.)

Approach: stationary measure $(\mu = \mu * \gamma)$. Show its invariance by showing that it is nice enough.

Homogenuous setting:

Homogenuous setting (BFLM, BQ): $\Gamma \subset SL(n,\mathbb{Z})$ large enough, generated by $supp(\gamma)$, acting on \mathbb{T}^n , then every stationary measure is Haar or atomic.

Application: Theorem 1 (BH) $\Gamma \subset SL(2,\mathbb{Z})$, assume \mathbb{Z} is not a subgroup of finite index of Γ , $S = \{A_1, \ldots, A_n\}$ a finite generating set, f_i be C^1 -small area-preserving perturbations to A_i , then a measure stationary under them is either the area form or atomic.

Theorem 2: $R_1, \ldots, R_m \in SO(3)$, with counting measure, f_i are area-preserving perturbations to R_i as elements in $Diff(S^2)$, then stationary implies area form or atomic.

Oseledet's theorem: γ a finite supported measure on $Diff^r(M) = \Omega$, consider F: $\Omega^{\mathbb{N}} \times M \to \Omega^{\mathbb{N}} \times M$ as $(w, x) \mapsto (\sigma(w), f_0(x))$, where σ is the shift and f_0 is the first entry of w. Then μ is stationary iff F preserves $\gamma^{\mathbb{N}} \times \mu$. Similarly we can define \hat{F} when replacing \mathbb{N} with \mathbb{Z} .

Assume μ is ergodic, for $\gamma^{\mathbb{N}} \times \mu$ a.e. (w, x), there is $0 \subset V_1 \cdots \subset V_k = E^S \cdots \subset T_x(M)$, s.t. $v \in V_i \setminus V_{i-1}$ then $\lim \frac{1}{n} \log |D(f_{n-1} \cdots f_0)x| = \lambda_i$.

On $\gamma^{\mathbb{Z}} \times \mu$, there is decomposition $T_x M = \bigoplus_i E_i$. V_i is tangent to foliations \hat{W}_i .

Furstenberg, Kullback-Ledrappier Entropy: measure the non-invariance of measure. $f_*\mu = J_f\mu + \eta$, where $\eta \perp \mu$. $J_f = \frac{df_*\mu}{d\mu}$. Define $H_{\gamma}(\mu) = -\int \int \log J_f \times d\mu(x) d\gamma(f)$. H = 0 iff μ is invariant on $supp(\gamma)$.

Theorem: (Ledrappier, Avila-Viena) $H_{\gamma}(\mu) \leq \Lambda_{-} dim(M)$, where $\Lambda_{-} = \max_{\lambda_i < 0} (-\lambda_i)$.

Corr: if μ has no negative exponent then it is invariant.

Exercise: If all exponents are positive, the measure is atomic.

How to handle H when there is negative exponent?

Let $\hat{\mu}_w$ be the conditional measure of $\hat{\mu} = \gamma^{\mathbb{Z}} \times \mu$ on $\{w\} \times M$, $\hat{\mu}^{\hat{W}_i}(w, x)$ be the conditional measure on $\hat{W}_i(w, x)$, $\mu^{\hat{W}_i}(w, x)$ be the conditional measure of μ on \hat{W}_i , the Hausdorff dimension of the latter 2 $\delta_i(\hat{\mu})$, $D_i(\mu)$, let $e_1 = \delta_1$, $e_i = \delta_i - \delta_{i-1}$ when i > 1, and define E_i similarly from D_i , then:

$$H_{\gamma} = -\sum_{\lambda_i < 0} (-\lambda_i)(E_i - e_i)$$

Remark: the sum depends only on the stable part.

Remark: $\hat{\mu}_w = \hat{\mu}_v$ if w and v have the same future. μ is the integral of these $\hat{\mu}_w$, hence is generally "thicker" that $\hat{\mu}_w$, hence the right-hand-side is usually positive.

Theorem: ν compactlu supported on $Diff^2(M)$, dim(M) = 2, assume μ has 1 positive & 1 negative exponent and ergodic, then either (1) μ is atomic (2) $\hat{\mu}^{W^u}$ is Lebesgue, (3) E^s is non-random (i.e. $E^s(w, x)$ only depends on x for a.e. (w, x).