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Let (M, g) be an open, connected, complete
Riemannian manifold, A = divV the Laplace
Beltrami operator on C? functions.

Then [Sullivan (87)], there is Ag > 0 such
that

1) The spectrum of A on L2(M,Vol) is con-
tained in (—oo, —Ag], but not in (—oo, —X\g —¢], for
e > 0.

2) For any X\ < \g, there are positive (—\)-
eigenfunctions.



From the spectral theorem, one gets expres-
sions for g

as the Rayleigh quotient:

2
No = inf s__dm__ |
fec2n) IS

as the decay rate of the heat kernel:
fort>0,z,y € M, p(t,z,y) = e>(z,y) and

1
A = — lim —Inp(t :
0 Jim - p(t,z,y)



Example: (M,g) = (R%, go). Then, \g =0,

the spectrum of A is (—o0,0] (by Fourier
transform)

< 89> o=~ [ 1E2F©3(O).

r2, and u measure on S4—1,

[y €< du(e)

IS a A-eigenfunction.

and for A > 0, A

F(x) :



Example: (H% gg) the hyperbolic space with
curvature -1. Then, \g = (d — 1)2/4, the
spectrum is (—oo, —(d—1)2/4] (use represen-
tation theory of Isoy (H% gg))

2
and for A < W=D\ — _(d—1)2s(s — 1),s >
1/2, u measure on S 1 (seen as the bound-
ary of H%) and k(o, z, &) the Poisson kernel,

Fap(2) = [,k (0,2,€)dp(©)

is a (—=)\)-eigenfunction.



In both cases, when the measure u is the ro-
tation invariant measure d¢, we get an eigen-
function that depends only on the distance
to o.

In particular, the (—Xg)-eigenfunction

Fy/2.4.(2) = \@?H Vk(o,2,€) de

is called the ground state, or Harish-Chandra
function.

In this talk, we assume that (M,gqg) is the
universal cover of a compact manifold with
negative sectional curvatures. Let G be the
group of deck transformations.



GEOMETRY OF M AND M

M is homeomorphic to RY.

Geodesic rays v1,vo are said to be equivalent
if their Hausdorff distance is bounded.

The space &M of equivalence classes is home-
omorphic to S 1 and M UA&M is a closed
d-dimensional ball.

For any x € M and a suitable a > 0, e—dz(&mn)
where d; is the Gromov product

do(€m) = lim 2 (d(e,) + d(z,2) = d(y, )

defines a metric on oM.



For all x € M,

T : SeM — OM, 75(v) = [y (R1)] = yu(400)

defines a bi-HOlder continuous homeomor-
phism. We identify M x OM with SM by

(z,€) ~ 5 1 (£).

The action of the covering group G extends
to M. The quotient M x M /G identifies
with SM.

The foliation M x {¢},¢£ € OM on M x dM de-
scends to the stable foliation of the geodesic
flow on SM.



Regular equivariant families of boundary mea-
sures; r.e.m.

A r.e.m. is a mapping = — uz,x € M, uz
measure on OM that is

1) equivariant: for all g € G, x, gz = gxlix,
2) such that all uy have the same zero sets,
3) for fixed z,y, £ — m|mm@ = k(x,y,€) is
Holder continous and

4) for fixed &, y — k(x,y,&) is C1L.

We normalize a r.e.m. by [y pa(0M)dz = 1,
where Mg is a fundamental domain for G.
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Associated to a r.e.m. is a closed 1-form
a(x,£). For each &, set

QA&QMV = dIn \aAHOv@“Mv_@”&.
It is well-defined by 4), is a closed 1-form on
M, does not depend on zg and is G-invariant:

g a(gz, g§) = alx,§).
In particular, it descends on M x OM = SM
as a closed 1-form along the stable foliation.

The energy £ of a (normalized) r.e.m. is
given by

£(n) = \5 |~ llae, 112 dpa(€)da
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Examples:

The Margulis (or Patterson-Sullivan) r.e.m.
vy IS constructed as follows. For R > 0, let
Ve R be the Lebesgue measure on the sphere
of center x and radius R.

Margulis (70) showed that there is a number
V such that the measures e~V ¥y, p weak*
converge on M U &M to a measure Uy SUp-
ported by OM. Equivariance is clear.

V is the volume entropy of M and the topo-
logical entropy of the geodesic flow; o is VX
the Liouville 1-form on SM and £(v) = V2.
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The Lebesgue (or visibility) r.e.m. Az is the
image of the Lebesgue measure on S;M by
mr. Equivariance is clear. 2), 3) and 4) are
due to Anosov (67).

The harmonic r.e.m. w; is the exit mea-
sure of the Brownian Motion starting from
x. Equivariance and 2) are clear. 3) is due to
Anderson and Schoen (85). 4) follows since
y — k(x,y,£) is harmonic.

The energy £(w) is h, the Kaimanovich en-
tropy of the Brownian Motion.
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All three families coincide (up to normaliza-
tion) when (M, g) is a symmetric space. In
the general variable negative curvature case,
we have

Theorem [Mohsen 07]

4 g = inf{E(u); p r.e.m.}.

Theorem 1 [L- Lim 15] There exists a unique
normalized r.e.m. u® such that

Eu®) = 4.
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Actually, Mohsen was considering the Rayleigh
quotient of a normalized r.e.m. R(u)

R = [ ]IV, 2 O)F dizo(€)da
We have:

Vi/k(xq, x, m
202 \5 | VE(z0, 2,6 ()

oM (\/k(zg,7,£))>
_ N?\\5\@2__4_3 k(zo, z, 6|3 dua(€)dz

— MMA.:V.
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We give one construction of u,z € M.
Fact [Sullivan 87] The Green function of
A+ X\g is finite:

H Oo
Gao(e:v) = 1y @) = [ bt .yt

where p(t,z,vy) = e!®(z,y) is the heat kernel
on M.

We prove:
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Fact [L- Lim 15] jm measures QWO? e R
weak* converge on MUOM to a measure tm

supported by OM .
Then,

dp0 G5, (y, 2)
EA@ — |lim Wo
dp9 & Qyo@“ 2)

= k3, (2,9,),

where k) (z,y, ) is a positive (—Ag)-eigenfunction.
The last equality is

Theorem 2 [L- Lim 15] The Martin bound-

ary of the operator A 4+ \g is the geometric
boundary &M.
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Martin boundary for A + A:
Anderson-Schoen (85) for A,

Ancona (85) for A 4+ A\, A < A\g and for ran-
dom walks with finite support on hyperbolic
groups, the Green function being Gr(g) =
Saru*(g),r < R, R critical exponent.

Gouézel (2014) for symmetric random walk
on hyperbolic groups with finite support and
GR.

Our Theorem 2 is the Brownian motion coun-
terpart of Gouézel’s result.
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Theorem 2 shows that if indeed the mea-
sures QWOAﬁ )V r Weak™ converge to a mea-

sure p9, then /-—4(¢) is a positive (—Ag)-

eigenfunction.

It follows that £(u°) = 4)\g. Uniqueness fol-
lows by the strict convexity of the functional

p— E(p).
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In order to show weak* convergence of the
measures G% (z,.)v, g, define for v € SM,
O 9

and ¥ any lift ov to SM:

1

p 1= —21im —1Inky, ((0), 15(1), v5(+00)).

Then (Hamenstadt), ¢ is a Holder continu-
ous function on SM. The Gibbs measure is
mixing and replaces the measure of maximal
entropy in Margulis’'s argument. There is no
exponential factor since

Fact Pressure (p) = 0.
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The following positive (—Xg)-eigenfunction
c(x,y) is the ground state around x:

o(z,y) = \ 95@&6

It appears in the Local Limit Theorem:

Theorem 3 [L- Lim 15] There is a constant

C' such that
C
__quw\wv,ONW Q&@v|n?f@v.

t—00 /\m
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LLT for symmetric spaces is due to P. Bougerol (81).

Analogous LLT for random walks on a countable group
G with probability wu:

P. Gerl (79): G = F», n on generators;

P. Gerl & W. Woess (86): G = Fy4, u on generators;
S. Lalley (93): G =Ty, u finite support;

S. Gouézel & S. Lalley (13): G surface group, p sym-
metric finite support;

S. Gouézel (14)(15): G fin.gen. Gromov-hyperbolic

group, u symmetric superexponential moments.
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Local Limit Theorem follows from a Taube-
rian T heorem and
Jim o= A LG y) = Celep). (1)
The proof of (1) uses the HOlder continuous
function
1

py = —2]im —In kx(Voc0y, 15(8), v5(400)).

Then, oy — ¢ as A = Ag, the Pressure P, of
py goes to O as A — A\g and

Fact The Gibbs states m, of @), are uni-

formly mixing on HOlder continuous func-
tions as A — Ap.
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|ﬁy%>@y§év = —P) \@Qiﬁwvﬁy@év% =

Imuv, \oo mwym \ mlﬁyb@yﬁ@u Nv QWA&Q NVQN&NU
0 Sr(x) Qvfﬁwf Nv

where Sgp(x) is the sphere of radius R and dz
the corresponding Lebesgue measures.

G
As R — oo, % converges to ky(x,y, 7z (vZ))

(Martin Boundary),
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anr(@y) = [0 ey ()G, 2)dz
R

converges, as R — oo to [,k (,v, E)du (&)

for some r.e.m. u; (by mixing of the Gibbs
measure m) ).

Using the uniform mixing of my, as A — Aq,

0

O
converges towards

lim a) r(z,y) ”\

A— g, R—00 oM

©.@)

—P\—G)(z,y) = Lu\/\ e ™M ay p(z,y)dR

O

\av,o?w Y, mV&t&o (£).
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The r.e.m. P is the normalized p?0 so that

\@i \ayoA& Y, @&tao@v = c(xz,y) y EWOAQNQV&N.

In order to eliminate Py, one uses in the same
way

3 02
(=P)7 5565z, y)
= 2(-Py)3 \@Q?%\/?S@:ﬁv dzdw

and the uniform 2-mixing of my as A — Ag.
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Finally, one gets, setting F'()\) = @\/Qyﬁn Yy),
as A — Ao,
2F'(\)
F(A)3
which shows (1).

» (Cew, y)) ™%,

The constant Q IS related to the total mass
of the r.e.m. u© as follows.

Fact Forz € M,¢ #n € OM, the following
limit exists:

G, (Y, 2)
0.(£,m) == |Iim 0
) = G () (2, 2)
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Fact The measure m® on (9M)3 defined by
dm?(&,n,¢) =

02(€,1)02(n, {)0x(n, €)dud(€)dus (n)du3 (¢)

does not depend on xz. In particular, mO is
G-invariant.

Let T be the mP-measure of a fundamental
domain for the action of G on (8M)3. Then,
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