Bottom of spectrum and equivariant families of boundary measures in negative curvature.

University of Notre Dame/Université Paris 6 François Ledrappier

Joint work with Seonhee Lim, Seoul Nat. Univ.

MSRI, May 14, 2015

Ч

Riemannian manifold, $\Delta = \text{div}\nabla$ the Laplace Beltrami operator on C^2 functions. Let (M,g) be an open, connected, complete

that Then [Sullivan (87)], there is $\lambda_0 \geq 0$ such

 $\overset{\circ}{\scriptstyle >} 0.$ tained in $(-\infty, -\lambda_0]$, but not in $(-\infty, -\lambda_0 - \varepsilon]$, for 1) The spectrum of Δ on $L^2(\widetilde{M}, \text{Vol})$ is con-

2) For any $\lambda \leq \lambda_0$, there are positive $(-\lambda)$ eigenfunctions

sions for λ_0 From the spectral theorem, one gets expres-

as the Rayleigh quotient:

$$\lambda_0 = \inf_{\substack{f \in C_c^2(\widetilde{M})}} \frac{\int \|\nabla f\|^2}{\int f^2}$$

for $t > 0, x, y \in \widetilde{M}$, $p(t, x, y) := e^{t\Delta}(x, y)$ and as the decay rate of the heat kernel:

$$\lambda_0 = -\lim_{t \to \infty} \frac{1}{t} \ln p(t, x, y).$$

ω

Example: $(\widetilde{M},g) = (\mathbb{R}^d,g_0)$. Then, $\lambda_0 = 0$,

transform) the spectrum of Δ is $(-\infty, 0]$ (by Fourier

$$<\Delta f,g>_{L^2}=-rac{1}{(2\pi)^d}\int |\xi|^2\widehat{f}(\xi)\widehat{g}(\xi).$$

and for $\lambda \geq 0, \lambda = r^2$, and μ measure on \mathbb{S}^{d-1} ,

$$F(x) := \int_{\mathbb{S}^{d-1}} e^{r < \xi, x > d\mu(\xi)}$$

is a λ -eigenfunction.

spectrum is $(-\infty, -(d-1)^2/4]$ (use represencurvature -1. Then, $\lambda_0 = (d-1)^2/4$, the tation theory of $Iso_+(\mathbb{H}^d, g_0))$ Example: (\mathbb{H}^d, g_0) the hyperbolic space with

and for $\lambda \leq \frac{(d-1)^2}{4}, \lambda = -(d-1)^2 s(s-1), s \geq$ ary of \mathbb{H}^d) and $k(o, z, \xi)$ the Poisson kernel, $1/2,\ \mu$ measure on \mathbb{S}^{d-1} (seen as the bound-

$$F_{s,\mu}(z) := \int_{\mathbb{S}^{d-1}} k^s(o, z, \xi) d\mu(\xi)$$

is a $(-\lambda)$ -eigenfunction.

С

to *o*. function that depends only on the distance tation invariant measure $d\xi$, we get an eigen-In both cases, when the measure μ is the ro-

In particular, the $(-\lambda_0)$ -eigenfunction

$$F_{1/2,d.}(z) := \int_{\mathbb{S}^{d-1}} \sqrt{k(o, z, \xi)} d\xi$$

function is called the ground state, or Harish-Chandra

group of deck transformations. In this talk, we assume that $({ar M},g)$ is the universal cover of a compact manifold with negative sectional curvatures. Let G be the

M is homeomorphic to \mathbb{R}^d . d-dimensional ball. if their Hausdorff distance is bounded. For any $x \in M$ and a suitable a > 0, $e^{-ad_x(\xi,\eta)}$ GEOMETRY OF \widetilde{M} AND $\partial \widetilde{M}$ omorphic to \mathbb{S}^{d-1} and $\widetilde{M}\cup\partial\widetilde{M}$ is a closed The space ∂M of equivalence classes is home-Geodesic rays γ_1, γ_2 are said to be equivalent

$$d_x(\xi,\eta) := \lim_{y \to \xi, z \to \eta} \frac{1}{2} \left(d(x,y) + d(x,z) - d(y,z) \right)$$

where d_x is the Gromov product

defines a metric on ∂M .

For all $x \in \widetilde{M}$,

defines a bi-Hölder continuous homeomor- $\pi_x: S_x \widetilde{M} \to \partial \widetilde{M}, \pi_x(v) := [\gamma_v(\mathbb{R}_+)] = \gamma_v(+\infty)$ phism. We identify $M imes \partial M$ with SM by

$$(x,\xi) \sim \pi_x^{-1}(\xi).$$

with SM. to ∂M . The quotient $M imes \partial M/G$ identifies The action of the covering group G extends

scends to the stable foliation of the geodesic flow on SM. The foliation $\widetilde{M} \times \{\xi\}, \xi \in \partial \widetilde{M}$ on $\widetilde{M} \times \partial \widetilde{M}$ de-

sures; r.e.m. Regular equivariant families of boundary mea-

2) such that all μ_x have the same zero sets, 1) equivariant: for all $g \in G, x, \mu_{gx} = g_*\mu_x$, A r.e.m. is a mapping $x \mapsto \mu_x, x \in M, \mu_x$ measure on ∂M that is

3) for fixed $x, y, \xi \mapsto \frac{d\mu y}{d\mu x}(\xi) =: k(x, y, \xi)$ is 4) for fixed ξ , $y \mapsto k(x, y, \xi)$ is C^1 . Hölder continous and

where M_0 is a fundamental domain for G. We normalize a r.e.m. by $\int_{M_0} \mu_x(\partial M) dx = 1$,

 $\alpha(x,\xi)$. For each ξ , set Associated to a r.e.m. is a closed 1-form

 $\alpha(x,\xi) := d \ln k(x_0, y, \xi)|_{y=x}.$

It is well-defined by 4), is a closed 1-form on M, does not depend on x_0 and is G-invariant:

 $g^*\alpha(gx,g\xi) = \alpha(x,\xi).$

as a closed 1-form along the stable foliation. In particular, it descends on $\widetilde{M} \times \partial \widetilde{M} = SM$

given by The energy \mathcal{E} of a (normalized) r.e.m. is

 $\mathcal{E}(\mu) := \int_{M_0} \int_{\partial \widetilde{M}} \|\alpha(x,\xi)\|_x^2 \, d\mu_x(\xi) \, dx.$

Examples:

 $u_{x,R}$ be the Lebesgue measure on the sphere ν_x is constructed as follows. For R > 0, let Margulis (70) showed that there is a number converge on $M \cup \partial M$ to a measure ν_x supof center x and radius R. V such that the measures $e^{-VR}
u_{x,R}$ weak* The Margulis (or Patterson-Sullivan) r.e.m.

the Liouville 1-form on SM and $\mathcal{E}(\nu) = V^2$. logical entropy of the geodesic flow; lpha is V imesV is the volume entropy of M and the topo-

ported by ∂M . Equivariance is clear.

due to Anosov (67). π_x . Equivariance is clear. 2), 3) and 4) are image of the Lebesgue measure on $S_{x}M$ by The Lebesgue (or visibility) r.e.m. λ_x is the

 $y \mapsto k(x, y, \xi)$ is harmonic. x. Equivariance and 2) are clear. 3) is due to sure of the Brownian Motion starting from Anderson and Schoen (85). 4) follows since The harmonic r.e.m. ω_x is the exit mea-

tropy of the Brownian Motion. The energy $\mathcal{E}(\omega)$ is h, the Kaimanovich en-

we have the general variable negative curvature case, tion) when (M,g) is a symmetric space. In All three families coincide (up to normaliza-

Theorem [Mohsen 07]

$$4\lambda_0 = \inf\{\mathcal{E}(\mu); \mu \text{ r.e.m.}\}.$$

normalized r.e.m. μ^0 such that **Theorem 1** [L- Lim 15] There exists a unique

$$\mathcal{E}(\mu^0) = 4\lambda_0.$$

 $\frac{1}{3}$

Actually, Mohsen was considering the Rayleigh quotient of a normalized r.e.m. $\mathcal{R}(\mu)$

$$\mathcal{R}(\mu) := \int_{M_0} \int_{\partial \widetilde{M}} \|\nabla \sqrt{k(x_0, x, \xi)}\|_x^2 d\mu_{x_0}(\xi) dx$$

$$\mathcal{R}(\mu) = \int_{M_0} \int_{\partial \widetilde{M}} \frac{\|\nabla \sqrt{k(x_0, x, \xi)}\|_x^2}{(\sqrt{k(x_0, x, \xi)})^2} d\mu_x(\xi) dx$$
$$= \frac{1}{4} \int_{M_0} \int_{\partial \widetilde{M}} \|\nabla \ln k(x_0, x, \xi)\|_x^2 d\mu_x(\xi) dx$$
$$= \frac{1}{4} \mathcal{E}(\mu).$$

 $\Delta + \lambda_0$ is finite: We give one construction of $\mu_x^0, x \in \widetilde{M}$. Fact [Sullivan 87] The Green function of

$$G_{\lambda_0}(x,y) = \frac{1}{\Delta + \lambda_0}(x,y) = \int_0^\infty e^{\lambda_0 t} p(t,x,y) dt$$

on \widetilde{M} . where $p(t, x, y) = e^{t\Delta}(x, y)$ is the heat kernel

We prove:

Then, supported by ∂M . weak* converge on $\widetilde{M} \cup \partial \widetilde{M}$ to a measure μ_x^0 **Fact** [L- Lim 15] The measures $G^2_{\lambda_0}(x,.)\nu_{x,R}$

$$\frac{d\mu_{y}^{0}}{d\mu_{x}^{0}}(\xi) = \lim_{z \to \xi} \frac{G_{\lambda_{0}}^{2}(y,z)}{G_{\lambda_{0}}^{2}(x,z)} = k_{\lambda_{0}}^{2}(x,y,\xi),$$

where $k_{\lambda_0}(x, y, \xi)$ is a positive $(-\lambda_0)$ -eigenfunction. The last equality is

boundary ∂M . ary of the operator $\Delta + \lambda_0$ is the geometric Theorem 2 [L- Lim 15] The Martin bound-

Martin boundary for $\Delta + \lambda$:

Anderson-Schoen (85) for Δ ,

groups, the Green function being $G_r(g) :=$ dom walks with finite support on hyperbolic $\sum_{n} r^{n} \mu^{*n}(g), r < R, R$ critical exponent. Ancona (85) for $\Delta + \lambda, \lambda < \lambda_0$ and for ran-

 G_R on hyperbolic groups with finite support and Gouëzel (2014) for symmetric random walk

terpart of Gouëzel's result. Our Theorem 2 is the Brownian motion coun-

sure μ_x^0 , then $\sqrt{\frac{d\mu_y^0}{d\mu_x^0}}(\xi)$ is a positive $(-\lambda_0)$ sures $G^2_{\lambda_0}(x,.)
u_{x,R}$ weak* converge to a mea-Theorem 2 shows that if indeed the mea-

eigenfunction.

 $\mu \mapsto \mathcal{E}(\mu).$ It follows that $\mathcal{E}(\mu^0) = 4\lambda_0$. Uniqueness follows by the strict convexity of the functional

and \tilde{v} any lift ov to SM: In order to show weak* convergence of the measures $G^2_{\lambda_0}(x,.)
u_{x,R}$, define for $v\in SM$,

$$\varphi := -2 \lim_{t \to 0} \frac{1}{t} \ln k_{\lambda_0}(\gamma_{\widetilde{v}(0)}, \gamma_{\widetilde{v}}(t), \gamma_{\widetilde{v}}(+\infty)).$$

exponential factor since entropy in Margulis's argument. There is no mixing and replaces the measure of maximal ous function on SM. The Gibbs measure is Then (Hamenstädt), φ is a Hölder continu-

Fact Pressure $(\varphi) = 0$.

c(x, y) is the ground state around x: The following positive $(-\lambda_0)$ -eigenfunction

$$c(x,y) := \int_{\partial \widetilde{M}} k_{\lambda_0}(x,y,\xi) d\mu_x^0(\xi)$$
$$= \int_{\partial \widetilde{M}} \sqrt{d\mu_y^0} \sqrt{d\mu_x^0}.$$

It appears in the Local Limit Theorem:

C such that Theorem 3 [L- Lim 15] There is a constant

$$\lim_{t \to \infty} t^{3/2} e^{\lambda_0 t} p(t, x, y) = \frac{C}{\sqrt{\pi}} c(x, y).$$

LLT for symmetric spaces is due to P. Bougerol (81).

G with probability μ : Analogous LLT for random walks on a countable group

- P. Gerl (79): $G = \mathbb{F}_2$, μ on generators;
- P. Gerl & W. Woess (86): $G = \mathbb{F}_d$, μ on generators;
- S. Lalley (93): $G = \mathbb{F}_d$, μ finite support;
- S. Gouëzel & S. Lalley (13): G surface group, μ symmetric finite support;
- group, μ symmetric superexponential moments. S. Gouëzel (14)(15): G fin.gen. Gromov-hyperbolic

rian Theorem and Local Limit Theorem follows from a Taube-

$$\lim_{\lambda \nearrow \lambda_0} \sqrt{\lambda_0 - \lambda} \frac{\partial}{\partial \lambda} G_\lambda(x, y) = C c(x, y).$$
(1)

function The proof of (1) uses the Hölder continuous

$$\begin{split} \varphi_{\lambda} &:= -2 \lim_{t \to 0} \frac{1}{t} \ln k_{\lambda}(\gamma_{\widetilde{v}(0)}, \gamma_{\widetilde{v}}(t), \gamma_{\widetilde{v}}(+\infty)). \\ \text{Then, } \varphi_{\lambda} \to \varphi \text{ as } \lambda \to \lambda_{0}, \text{ the Pressure } P_{\lambda} \text{ or } \\ \varphi_{\lambda} \text{ goes to } 0 \text{ as } \lambda \to \lambda_{0} \text{ and} \end{split}$$

tions as $\lambda \rightarrow \lambda_0$. formly mixing on Hölder continuous func-**Fact** The Gibbs states m_{λ} of φ_{λ} are uni-

$$-P_{\lambda} \frac{\partial}{\partial \lambda} G_{\lambda}(x,y) = -P_{\lambda} \int_{\widehat{M}} G_{\lambda}(x,z) G_{\lambda}(z,y) dz = -P_{\lambda} \int_{0}^{\infty} e^{P_{\lambda} R} \left(\int_{S_{R}(x)} e^{-P_{\lambda} R} \frac{G_{\lambda}(y,z)}{G_{\lambda}(x,z)} G_{\lambda}^{2}(x,z) dz \right) dR$$

the corresponding Lebesgue measures. where $S_R(x)$ is the sphere of radius R and dz

As $R \to \infty$, $\frac{G_{\lambda}(y,z)}{G_{\lambda}(x,z)}$ converges to $k_{\lambda}(x, y, \pi_x(v_x^z))$ (Martin Boundary),

$$u_{\lambda,R}(x,y) := \int_{S_R(x)} e^{-P_{\lambda}R} k_{\lambda}(x,y,\pi_x(v_x^z)) G_{\lambda}^2(x,z) dz$$

for some r.e.m. μ_x^λ (by mixing of the Gibbs converges, as $R o \infty$ to $\int_{\partial \widetilde{M}} k_{\lambda}(x,y,\xi) d\mu_x^{\lambda}(\xi)$ measure m_{λ}).

Using the uniform mixing of m_{λ} , as $\lambda \to \lambda_0$,

$$-P_{\lambda}\frac{\partial}{\partial\lambda}G_{\lambda}(x,y) = -P_{\lambda}\int_{0}^{\infty} e^{P_{\lambda}R} a_{\lambda,R}(x,y) dR$$

converges towards

$$\lim_{\lambda \to \lambda_0, R \to \infty} a_{\lambda, R}(x, y) = \int_{\partial \widetilde{M}} k_{\lambda_0}(x, y, \xi) d\mu_x^{\lambda_0}(\xi)$$

The r.e.m.
$$\mu^0$$
 is the normalized μ^{λ_0} so that
$$\int_{\partial \widetilde{M}} k_{\lambda_0}(x, y, \xi) d\mu_x^{\lambda_0}(\xi) = c(x, y) \int_{M_0} \mu_z^{\lambda_0}(\partial \widetilde{M}) dz.$$

In order to eliminate $P_{\lambda},$ one uses in the same way

$$(-P_{\lambda})^{3} \frac{\partial^{2}}{\partial \lambda^{2}} G_{\lambda}(x,y)$$

$$= 2(-P_{\lambda})^{3} \int_{\widetilde{M}} G_{\lambda}(x,z) G_{\lambda}(z,w) G_{\lambda}(z,y) \, dz du$$
and the uniform 2-mixing of m_{λ} as $\lambda \to \lambda_{0}$.

Finally, one gets, setting
$$F(\lambda) = \frac{\partial}{\partial \lambda} G_{\lambda}(x, y)$$
,
as $\lambda \to \lambda_0$,
$$\frac{2F'(\lambda)}{F(\lambda)^3} \to (Cc(x, y))^{-2},$$

which shows (1).

of the r.e.m. μ^0 as follows. limit exists: **Fact** For $x \in \widetilde{M}, \xi \neq \eta \in \partial \widetilde{M}$, the following The constant C is related to the total mass

$$heta_x(\xi,\eta) := \lim_{\substack{y o \xi, z o \eta}} rac{G_{\lambda_0}(y,z)}{G_{\lambda_0}(y,x)G_{\lambda_0}(x,z)}.$$

 $dm^{\mathsf{U}}(\xi,\eta,\zeta) :=$ **Fact** The measure m^0 on $(\partial M)^3$ defined by $\theta_x(\xi,\eta)\theta_x(\eta,\zeta)\theta_x(\eta,\xi)d\mu_x^0(\xi)d\mu_x^0(\eta)d\mu_x^0(\zeta)$

G-invariant. does not depend on x. In particular, m^0 is

domain for the action of G on $(\partial M)^3$. Then, Let Υ be the m^0 -measure of a fundamental

$$C = \frac{1}{2\sqrt{\Upsilon}}.$$

J. Amer. Math. Soc. 27 (2014), 893–928 dom walks in Gromov-hyperbolic groups S. Gouëzel, Local limit theorem for symmetric ran-

ble **13** (1995), 97-122 F. Ledrappier, Structure au bord des variétés à courbure négative, Séminaire Théorie Spec. Géom. Greno-

F. Ledrappier and S. Lim Local limit theorem in negative curvature, arXiv math. 1503.04156

Sup. (4), **40** (2007), 191–207 bolique est un point selle, Ann. Sci. École Norm O. Mohsen, Le bas du spectre d'une variété hyper-

nian geometry, J. Diff. Geom. 25 (1987), 327–351. D. Sullivan, Related aspects of positivity in Rieman-