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1. random walks on semisimple groups

µ a probability measure on GL(V ), V a finite dimensional vector space. WE call µ
has exponential moment if

R
max(||g||, ||g�1||)�dµ < 1 for some � > 0, has polynomial

moment if
R
log(max(||g||, ||g�1||))�dµ < 1 for some � > 0.

Let �µ be the closed subgroup spanned by the support of µ. �µ is irreducible if all
�-invariant subspaces of V are 0 and V . It is totally irreducible if there are no trivial col-
lection of subspaces invariant under �. If the action is not totally irreducible, it is always
possible to pass to a subgroup of finite index & a subspace.

Also assume that � is proximal (i.e. it contains a proximal element, i.e. an element of
the form diag(a, h) where a 2 R⇤ and the spectral radius of h is smaller than |a|). If G is
not proximal, pass to the r-th exterior product of V .

Theorem (Fursternberg) under these assumptions. there is a unique µ-stationary mea-
sure ⌫ on PV .

Let (B,�) = (G,µ)⌦N, T is the shift map B ! B, ⌫ is µ stationary means the map
B⇥PV ! B⇥PV , (b, x) 7! (Tb, b1x) preserves �⌦ ⌫. We need to use ergodic theorem on

(b, x) 7! log ||b1v||
||v|| .

Theorem (B-Q): If µ has polynomial moment of order p, ⌫ has positive Hausdor↵ dimen-
sion. Furthermore, 8y 2 PV ⇤, �(x, y) is the distance from x to y?, then

R
PV | log �(x, y)|p�1d⌫(x) 

C.

In dimension 2 case p�1 can be replaced with p. It is unknown for the other case. From
this one can prove central limit theorem and the law of large numbers.

Proposition: µ is a measure on GL(V ), �µ =< suppµ > and Hµ is its Zariski closure.
Assume that Hµ is connected and semisimple, L < Hµ algebraic and unimodular, then
9t > 0, for any x 2 Hµ/L, 8K ⇢ Hµ/L compact, Prob(gn . . . g1x 2 K) ! 0.

Lemma: µ is a measure on GL(V ) with polynomial moment, �µ =< suppµ > and
Hµ is its Zariski closure. Assume that Hµ is connected and semisimple, L < Hµ alge-
braic and unimodular, then 9t > 0, for Lebesgue a.e. x 2 Hµ/L, 8K ⇢ Hµ/L compact,
Prob(gn . . . g1x 2 K) ⇠ e�tn.

The proof is due to the fact that unimodular implies � 7! µ⇤� : L2(Hµ/L) ! L2(Hµ/L)
has spectral radius smaller than 1.
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Remark: This is not true without “a.e”. When H = SL(2,R), L = {
✓

1 t
0 1

◆
}, it is

possible to choose a µ that decays very slowly but is still of polynomial moment that makes
Prob(gn . . . g1x 2 K) decreases subexponentially for an x.

Proposition: µ is a measure on G = SL(2,R) with polynomial moment, let A be the
diagonal group, 8x 2 G/A, 8K ⇢ G/A compact, Prob(gn . . . g1x 2 K) ⇠ e�tn for some t.

Question: Is polynomial moment necessary? How about SL(2,C)/SL(2,R)?


