1. Kinetic transport of quasicrystals

Joint work with Marklof.

Lorentz gas model: *P* locally finite point sets in \mathbb{R}^d , asymptotic density 1, a fixed ball of radius *r* centered at each point, and non-interacting particles reflect on the surface of these scatterers.

Limits:

 $T \rightarrow \infty$: central limit theorem in dimension 2.

 $r \rightarrow 0$: Boltzman-Gradt limit.

Let $K_r = \mathbb{R}^d - Balls$, T^1K_r is the phase space. When $r \to 0$, we need to scale it by r^{d-1} ("macroscoptic coordinates"), hence the flow ϕ_r is on $T^1(r^{d-1}K_r)$. Extend it to $T^1(\mathbb{R}^d)$.

Let $f \in L^1(T^1(\mathbb{R}^d))$ be the density, $L^t_r f$ be the evolution of density, Question: is there a limit of L_r^t as $r \to 0$? If there is, does it satisfy linear Boltzmann equation $(\partial_t + V \nabla_Q) f = \int_{S_1^{d-1}} (f_t(Q, V') - f_t(Q, V) \sigma(V', V) dV'$?

Proved for random *P* by Gallavotti, Spahn. etc.

How about for a fixed *P*?

For integer lattice, linear Boltzmann can not hold. (Golse, 06)

Theorem A (M-S) In the lattice case, the limit exists, but satisfies generalized linear Boltzmann equation: Use extended phase space: $X = T^1(\mathbb{R}^d \times \mathbb{R}_{>0} \times S_1^{d-1}$. For $f \in L^1(T^1\mathbb{R}^d)$, \tilde{f}_t on *X* is the solution of: $f_0(Q, V, \xi, V_+) = f(Q, V)\rho(V, \xi, V_+), (\partial_t + V\nabla_Q - \partial \xi)\tilde{f}_t(Q, V, \xi, V_+) = \int_{S_1^{d-1}} \tilde{f}(Q, V_0, 0, V)\rho_0(V_0, V, \xi, V_+) dV_0,$ then $L^t(f)$ can be obtained by integrating over the last 2 parameters of \tilde{f} .

Quasicrystal setting: (e.g. Penrose tiling)

Consider *P* obtained by cut-and-project method. $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^m$, the two projections are π, π_{int} . Let *L* be a lattice in \mathbb{R}^n , $A = \overline{\pi_{int}(L)}$, $W \subset L$ a regular "window" set, $P = \{\pi(x) : x \in L, \pi_{int}(x) \in W\}.$

Theorem A can be extended to quasicrystal with cut and project case. *X* has another factor *W*.

The proof is based on:

Theorem B: Starting at (Q_0, V_0) , the *i*-th impact has parameters ξ_i (distance), V_i , w_i (internal parameter). Let (Q_0, V_0) be random with absolutely continuous probability measure Λ , then $(Q_0, V_0, \xi_i, w_i, V_i)$ has a limit distribution as $r \to 0$ with density $\Lambda(Q_0, V_0)\rho(V_0, \xi_1, w_1, V_1) \prod_{j\geq 2}(V_{j-2}, W_{j-1}, V_{j-1}, \xi_i, w_i, V_i).$

Let the lattice be $L = \mathbb{Z}^n g$, consider the orbit of $\Gamma g \begin{pmatrix} Rotation \cdot diag(r^{d-1}, \ldots r^{-1}) & 0 \\ 0 & 0 \end{pmatrix}$ 0 I_m ◆ , and let $r \to 0$, using the theorems of Ratner and Shah.