
1. Kinetic transport of quasicrystals

Joint work with Marklof.

Lorentz gas model: P locally finite point sets in Rd, asymptotic density 1, a fixed ball
of radius r centered at each point, and non-interacting particles reflect on the surface of
these scatterers.

Limits:

T ! 1: central limit theorem in dimension 2.

r ! 0: Boltzman-Gradt limit.

Let Kr = Rd�Balls, T 1
Kr is the phase space. When r ! 0, we need to scale it by r

d�1

(“macroscoptic coordinates”), hence the flow �r is on T

1(rd�1
Kr). Extend it to T

1(Rd).

Let f 2 L

1(T 1(Rd)) be the density, L

t
rf be the evolution of density, Question: is

there a limit of L

t
r as r ! 0? If there is, does it satisfy linear Boltzmann equation

(@t + VrQ)f =
R
Sd�1
1

(ft(Q, V

0)� ft(Q, V )�(V 0
, V )dV 0?

Proved for random P by Gallavotti, Spahn. etc.

How about for a fixed P?

For integer lattice, linear Boltzmann can not hold. (Golse, 06)

Theorem A (M-S) In the lattice case, the limit exists, but satisfies generalized linear
Boltzmann equation:
Use extended phase space: X = T

1(Rd ⇥ R>0 ⇥ S

d�1
1 . For f 2 L

1(T 1Rd), f̃t on X is the
solution of:
f0(Q, V, ⇠, V+) = f(Q, V )⇢(V, ⇠, V+), (@t+VrQ�@⇠)f̃t(Q, V, ⇠, V+) =

R
Sd�1
1

f̃(Q, V0, 0, V )⇢0(V0, V, ⇠, V+)dV0,

then L

t(f) can be obtained by integrating over the last 2 parameters of f̃ .

Quasicrystal setting: (e.g. Penrose tiling)

Consider P obtained by cut-and-project method. Rn = Rd ⇥ Rm, the two projections
are ⇡,⇡int. Let L be a lattice in Rn, A = ⇡int(L), W ⇢ L a regular “window” set,
P = {⇡(x) : x 2 L,⇡int(x) 2 W}.

Theorem A can be extended to quasicrystal with cut and project case. X has another
factor W .
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The proof is based on:

Theorem B: Starting at (Q0, V0), the i-th impact has parameters ⇠i (distance), Vi,
wi (internal parameter). Let (Q0, V0) be random with absolutely continuous probabil-
ity measure ⇤, then (Q0, V0, ⇠i, wi, Vi) has a limit distribution as r ! 0 with density
⇤(Q0, V0)⇢(V0, ⇠1, w1, V1)

Q
j�2(Vj�2,Wj�1, Vj�1, ⇠i, wi, Vi).

Let the lattice be L = Zn
g, consider the orbit of �g
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and let r ! 0, using the theorems of Ratner and Shah.


