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1 Introduction

1.1 Example of the First Use of Bounded Cohomology

• The first use of bounded cohomology is due to Gromov [Gromov 80], as a tool
to control the minimal volume of M

min vol(M) := min{vol(M) : −1 ≤ κ ≤ 1}

in terms of the simplicial volume ||M || of M, that is the `1-norm of the funda-
mental class [M ]

‖M‖ :=
∥∥[M ]

∥∥
1

= inf{|c|1 : c ∈ Cn(M,R) fundamental cycle}.

• Ghys [Ghys 87] gave a classification of actions of a finitely generated group Γ
by homeomorphisms on a circle, via the bounded Euler class. This was one of
the first applications using bounded Euler class.

• Bavard [Bavard 91] gave a characterization of finitely generated group Γ with
vanishing stable commutator length, via the comparison between bounded and
ordinary cohomology.

• Mineyev [Mineyev 00] gave a characterization of Gromov hyperbolic groups,
via the comparison between bounded and ordinary cohomology.

1.2 Bounded Cohomology via an Homological Algebra ap-
proach

• Ivanov [Ivanov 87] Used homological algebra with finitely generated groups and
trivial coefficients.

• Noskov [Noskov 90] Used homological algebra with finitely generated groups
with coefficients.
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• Burger and Monod [Burger-Monod 00] were able to fruitfully use bounded
cohomology to look at locally compact groups with coefficients.

2 Definitions and Properties

2.1 Definitions

Definition 2.1. Given a locally compact group G, we define the space of real-valued
continuous bounded functions on the cartesian product Gn

Cb(G
n,R) := {f : Gn → R : continuous and ‖f‖∞ <∞} (1)

with the diagonal G-action

(hf)(g0, ..., gn) := f(h−1g0, ..., h
−1gn)

that makes it into aG-module. If Cb(G
n,R)G is the submodule ofG-invariant vectors,

we define the homogeneus coboundary operator

dn : Cb(G
n+1,R)G → Cb(G

n+2,R)G

by

(dnf)(g0, ..., gn+1) :=
∑n

j=0(−1)jf(g0, ..., ĝj, ..., gn+1).

It is easy to check that dn+1dn = 0, so that Im dn ⊆ ker dn+1.

Definition 2.2. Bounded cohomology is the cohomology of the complex

0→ Cb(G,R)G
d0−→ Cb(G

2,R)G
d1−→ Cb(G

3,R)G
d2−→ ..., (2)

that is,

Hn
cb(G,R):=

ZCb(G
n+1,R)G

BCb(G
n+1,R)G

where ZCb(G
n+1,R) are the cocycles,

ZCb(G
n+1,R)G := ker{dn : Cb(G

n+1,R)G → Cb(G
n+2,R)G}

and BCb(G
n+1,R) are the coboundaries,

BCb(G
n+1,R)G := im{dn−1 : Cb(G

n,R)G → Cb(G
n+1,R)G}.
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Remarks.

• In (??) it is necessary to take invariants otherwise the cohomology of the com-
plex would be identically zero for all groups G and all n.

• One could replace R by a coefficient G-module E∗, where E∗ is the dual of a
separable Banach space E on which G acts by linear isometries, G→ Isom(E).

• If we do not require in (??) that the functions are bounded, we obtain the
ordinary group cohomology. In this case the coefficients are topological vector
spaces with a continuous G-action.

• If G is discrete then in (??) there are no continuity requirement and the
bounded cohomology is denoted only by Hn

b (G,R).

• What we gave above is the homogeneous definition of the continuous bounded
cohomology. We could also give the non-homogeneous definition, by giving the
non-homogeneous coboundary operator

δn : Cb(G
n,R)→ Cb(G

n+1,R)

defined as

(δnf)(g1, ..., gn+1) :=
f(g2, ..., gn+1) +

∑n
j=1(−1)jf(g1, ..., gjgj+1, ..., gn+1) + (−1)n+1f(g1, ..., gn)

Exercise. Find the continuous maps

Cb(G
n,R)G

ρn−1

�
τn

Cb(G
n−1,R)

such that the diagram

Cb(G
n,R)G

dn−1−−−→ Cb(G
n+1,R)G

↑ τn ↓ ρn

Cb(G
n−1,R)G

dn−1−−−→ Cb(G
n,R)

commutes.
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2.2 Properties

We have the following essential features of continuous bounded cohomology:

1. There is a seminorm in bounded cohomology, that is if κ ∈ Hn
cb(G,R) ⇒ is a

bounded cohomology class, then

‖κ‖ := inf{‖c‖∞ : [c] = κ}.

Note that in general Hn
cb(G,R) is only a seminormed space.

2. (Gromov, Brooks) If M a CW-complex, then there is an isometric isomorphism

Hn
b (M,R) ∼= Hn

b (π1(M),R).

This ia also true in ordinary cohomology, but only if the universal cover is
contractible.

3. If G is amenable (e.g. compact, abelian, minimal parabolic, solvable, compact
extension of solvable, etc.), then Hn

cb(G,R) = 0 (Trauber)

We note here some differences between bounded and ordinary cohomology:

1. If n = 0, then bounded continuous and ordinary cohomology coincide, as
H0
cb(G,R) = R = H0

c (G,R).

2. If n = 1, then δ1f(g, h) = f(h)− f(gh) + f(g) and BCb(G,R) = 0, thus

H1
cb(G,R) = {f : G→ R : δ1f = 0, f cont. and bounded} = Homcb(G,R) = 0.

while H1
c (G,R) = Homc(G,R).

3. If n = 2, then continuous bounded cohomolgoy is already difficult to compute.
If G is a non-compact simple Lie group with finite center, then

H2
cb(G,R) ∼= H2

c (G,R) ∼= Ω2(X)G

where X is the symmetric space associated to G (for example G = PU(1, 1)
and X = D2 is the Poincaré disk).

In general however H2
cb(G,R) 6= H2

c (G,R). For example,
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H2(F2,R) = 0 but dimH2
b (F2,R) =∞.

To see that H2(F2,R) = 0, recall that H2(G,R) is in a 1-1 correspondence
with central extensions of G and all these split if G = F2. Alternatively,
we also see this by looking at the bouquet M of two circles and using that
H2(F2,R) ∼= H2(M,R) and Mayer-Vietoris.

The fact that dimH2
b (F2,R) =∞ was shown by Brooks and Mitsumatsu with

a complicated and non-transparent proof. Recently, however, Rolli [Rolli 09]
showed that for every generator there is an isometric embedding `∞odd(Z,R) ↪→
H2
b (F2,R). In fact, let F2 =< a, b >. Choose sa, sb ∈ `∞odd(Z,R), that is

sa(−n) = −sa(n) and sb(−n) = −sb(n), and define f : F2 → R by

f(ak1bh1 ...aknbhn) := sa(k1) + sb(h1) + ...+ sa(kn) + sb(hn).

Here it is easy to see that f is not bounded but δ1f is a bounded cocycle.

Summarizing, we saw that in degree two a lot of information can be obtained
from the comparison map,

H2
cb(G,R)→ H2

c (G,R).

3 Examples

• Let G = Homeo+(S1) (thought of as a discrete group, as it is not locally
compact).

If x ∈ S1 is a fixed basepoint, g0, g1, g2 ∈ Homeo+(S1), we define the orientation
cocycle by

c(g0, g1, g2) :=


1 if (g0x, g1x, g2x) is positively oriented

−1 if (g0x, g1x, g2x) is negatively oriented

0 otherwise

The cocycle c is

obviously Homeo+(S1)-invariant and the bounded cohomology class it defines
is a multiple of the bounded Euler class that will be defined in Kathryn Mann’s
talk..

• Let now G = PU(1, 1), D2= unit disk with the Poincaré metric (1−|z|2)−2|dz|2
and area form ωD2 = (1− |z|2)−2dz ∧ dz.

If x ∈ D2, we define
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bD2(g0, g1, g2) :=
∫
4(g0x,g1x,g2x)

ωD2 ,

where4(g0x, g1x, g2x) is the geodesic triangle with vertices g0x, g1x, g2x. Then
bD2(g0, g1, g2) is a bounded cocycle, since |bD2(g0, g1, g2)| < π and it is G-
invariant.

If we choose instead x ∈ δD2 ∼= S1, we define βD2 analogously by integration
on ideal triangles. Then βD2 takes only ±π and 0 as values and hence

πc|PU(1,1) = βD2 .

• Analogously, we can consider G = PO(1, n)o and the cocycle defined by con-
sidering the volume of simplices in real hyperbolic n-space Hn

R. Then, since
this volume is uniformly bounded and G = PO(1, n)o-invariant, this defines
a G-invariant alternating continuous bounded cocycle, this time in degree n.
Likewise, the volume of ideal simplices in Hn

R (that is simplices with vertices
on the sphere at infinity ∂Hn

R of Hn
R ) gives a G-invariant alternating bounded

cocycle in degree n.

4 Homological Algebra Approach

4.1 A Different Resolution

Many of the cocycles defined above (in fact, all those on the boundary) are not
continuous. To give flexibility to bounded cohomology, it is convenient to use cocycles
that are not necessarily continuous and that do not live on the group itself. To this
extent the following result is paramount:

Theorem 4.1 (Burger-Monod, 00).
There is an isometric isomorphism

Hn
cb(G,R) ∼=

ZL∞alt(B
n+1,R)G

BL∞alt(B
n+1,R)G

,

where (B, ν) is a standard measure G-space with a quasi-invariant measure ν on
which G acts amenably and L∞alt(B

n+1,R)G consists of the G-invariant L∞ (equiva-
lence classes of) functions on Bn+1, which are alternating, that is such that

f(σ(b0, . . . , nn)) = sign(σ)f(b0, . . . , bn).
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Examples of Amenable Spaces.

• If G is a simple Lie group and P < G is a minimal parabolic subgroup then
the action of G on (G/P, ν) is amenable, where ν is the quotient of the Haar
measure. For example one can take G = SL(n,R) and P the subgroup of upper
triangular matrices, so that G/P is the space of full flags.

• If Tr is the tree associated to Fr, then Fr acts amenably on ∂Tr its boundary
with respect to

ν(C(x)) = 1
(2r(2r−1)n−1)

where |x| = n and C(x) ⊂ ∂Tr is the cone consisting of infinite words starting
with x.

• Let Γ be a finitely generated group, ρ : Fr → Γ a presentation with N = kerρ
and consider the subalgebra of N -invariant L∞ functions on ∂Tr

L∞(∂Tr)
N ⊂ L∞(∂Tr).

Mackey point realisation theorem asserts that there exists a standard measure
space (B, ν̄) with a Γ-map

p : ∂Tr → B,

so that p∗(ν) = ν̄ and there is an identification

L∞(∂Tr)
N ∼=−→ L∞(B)

via p∗. Moreover Gy B amenably.

4.2 Amenability and Double Ergodicity

In all of the above cases the action is doubly ergodic, i.e. ergodic on B×B. We recall
that this is equivalent to saying that

@ non-constant invariant measurable functions B ×B → R.

The isometric isomorphism in Theorem 4.1 in degree two reads

H2
cb(G,R) ∼=

ZL∞alt(B
3,R)G

BL∞alt(B
3,R)G

=
ker{d2 : L∞alt(B

3)→ L∞alt(B
4)}

im{d1 : L∞alt(B
2)→ L∞alt(B

3)}
.
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By double ergodicity L∞(B2,R) = R, so that L∞alt(B
2,R) = 0. It follows then that

H2
cb(G,R) ∼= ZL∞alt(B

3,R)G

The upshot of the above results is that continuous bounded cohomology in degree
2 is a Banach space.

5 Applications

5.1 Computation of norms

By the above result, in degree two the seminorm is actually a norm and its calculation
is very easy once one know the norm of the cocycle representing the class. For
example, if we define the bounded Kähler class to be κbD2 := [βD2 ], then,

κbD2 = inf{||c||∞ : [c] = κbD2} = ||βD2||∞ = π.

5.2 Milnor–Wood inequality and Teichmüller space

We now investigate the study of homomorphisms of lattices into Lie groups. The
celebrated Margulis’ superrigidity theorem [Margulis, ’74] classifies all asserts that
if Γ < H is a lattice, rk(H) ≥ 2 (e.g. H = SL(n,R), for n ≥ 3), G is a simple

non-compact Lie group and ρ : Γ → G is a homomorphism with ρ(Γ)
Z

= G ⇒ ρ,
then ρ the restriction of a rational homomorphism of H, ρ : H → G. The same holds
if rk(H) = 1 and if H has property (T) (that is, H 6= SO(n, 1), SU(n, 1)) [Corlette,
’90]. In fact, if H = SO(n, 1), not only Margulis’ and Corlette’s theorems do not
apply, but actually superrigidity does not hold.

So we consider a different approach to study representations of lattices in H =
SO(2, 1) ∼= SU(1, 1) ∼= SL(2,R).

Let Σg be a compact orientable surface, and let Γg := π1(Σg). If κbD2 ∈ H2
cb(PU(1, 1),R),

then ρ∗(κbD2) ∈ H2
b (Γg,R) ∼= H2

b (Σg,R), where we used the isomorphism discussed in
§ 2.2(2). We can use now the duality

< ·, · >: H2
b (Σg,R)×H`1

2 (Σg,R)→ R

and obtain an invariant on the space of representations from Γ into H, called the
Euler number

E(ρ) := | < ρ∗(κbD2), [Σg] > |.
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Using the computation of the norm above and of the simplicial volume of Σg, we
obtain the Milnor-Wood Inequality

|E(ρ)| = |< ρ∗(κbD2), [Σg] >| ≤
∥∥∥ρ∗(κbD2)

∥∥∥∥∥Σg

∥∥ ≤∥∥∥κbD2

∥∥∥∥∥Σg

∥∥ = 2π|χ(Σg)|.

Definition 5.1. A representation ρ : Γg → PU(1, 1) is maximal if

E(ρ) = 2π|χ(Σg)|.

Perhaps using one of the many different definitions of the Euler number, it is easy
to see that hyperbolizations (that is representations ρ : π1(Σg) → SL(2,R) that
are discrete an injective). The converse is true and not obvious, although by now
classical.

Theorem 5.2 (Goldman, ’80). ρ is maximal if and only if ρ is a hyperbolization.

5.3 Applications, Cont.

Remarks.

• Analogous results for Σ with non-empty boundary

• Teichmüller space can be identified with the space of hyperbolizations, and
hence the space of maximal representations. This leads to defining higher
Teichmüller theory the generalisation of the above theory obtained by replacing
PU(1, 1) by other Lie groups G. More specifically:

– G split simple - e.g. SL(n,R), Sp(2n) (Hitchin, Labourie, Fock-Goncharov)

– G Hermitian - e.g. SU(p, q), Sp(2n) (Burger-I.-Wienhard, Bradlow-Garcia
Prada-Gothen)
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