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1. Introduction

In this talk, Γ is a finitely generated group, Homeo+(S1) is the group of orien-
tation preserving homeomorphisms of S1, and Hom(Γ,Homeo+(S1)) is the space of
representations of Γ→ Homeo+(S1). This space has an important interpretation: if
Γ is the fundamental group of a manifold M , then Hom(Γ,Homeo+(S1)) is the space
of flat S1 bundles over M .

Definition 1.1. A bundle is flat if it admits a flat connection, or equivalently
if it admits a foliation transverse to the fibers.

The correspondence between Hom(Γ,Homeo+(S1)) and flat bundles is through
the monodromy representation.

Figure 1: Unravelling the circle on top of a point on the torus and looking at transverse
foliations

An important interpretation of these objects is that there is a monodromy repre-
sentation,

flat bundle ←→ ρ : Γ : π1(M)→ Homeo+(S1)

and therefore

flat bundles/equivalence ←→ Hom(Γ,Homeo+(S1))/(semi)-conjugacy
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The following picture illustrates how to define the monodromy representation given
a flat bundle: for each point p in S1 (which we identify with the fiber over the
basepoint in Σ), and each loop γ in π1(Σ), there is a unique lift of γ starting at p and
tangent to the leaves of the foliation. We define ρ(γ)(p) to be the other endpoint of
this lifted path.

Figure 2: Lifting a loop γ to define the monodromy

2. The Basic Problem

How do we understand the space Hom(Γ,Homeo+(S1))/ ∼? (from now on, ∼ means
semi-conjugacy, but we won’t worry too much about the difference between conjugacy
and semi-conjugacy). Here are some first questions:

1. Is the space nontrivial?
(i) Does Γ act nontrivially (or faithfully) on S1?
(ii) as a more refined question, we can ask: Does a given S1 bundle admit a

flat connection?
2. Can we describe:

(i) the connected components of this space? Connected components correspond
to the deformation classes of flat bundles (or actions, or representations) (ii)
isolated points (these correspond to rigid representations).

3. Can we parameterize Hom(Γ,Homeo+(S1))/ ∼:
(i) Are there natural or reasonable coordinates (or even local coordinates) on

this space?
A few examples of representations

• Take a surface group Γ = π1(Σ). Embed Γ in PSL(2,R) ⊂ Homeo+(S1)
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• Take a group, abelianize it, and map the abelianization to S1 ⊂ Homeo+(S1)
(as rotations)

• If Γ is the free group, one can specify arbitrary homeomorphisms as the images
of the generators; this defines a representation.

• A more sophisticated example: if M3 has a pseudo-Anosov flow, then there is
a faithful “universal circle” representation π1(M

3)→ Homeo+(S1)

3. Coordinates on Hom(Γ, SL(2,R))/ ∼

Since Homeo(S1) is complicated, let’s look at an easier space – Hom(Γ, SL(2,R))/ ∼
(now ∼ really means conjugacy).

Hom(Γ, SL(2,R))/ ∼ has (well-known) trace coordinates. Basic facts about trace
are:

• A function to R

• It is a conjugation invariant, tr(ghg−1) = tr(h)

• It is not a homomorphism

The fact that trace gives coordinates is the following theorem:
Theorem 3.1.

Given two nondegenerate representations, ρ1, ρ2 ∈ Hom(Γ, SL(2,R)),
if tr(ρ1(γ)) = tr(ρ2(γ))∀γ ∈ S where S is a certain finite subset of Γ, then ρ1 ∼ ρ2.

Now we want to imitate this process for Hom(Γ,Homeo+(S1))/ ∼. We’ll look for
a conjugation-invariant function Homeo+(S1)→ R.

Figure 3: Poincaré, universal cover of circle

Definition 3.2. (the Poincaré translation number) Given f in Homeo(S1),
pick a lift f̃ of f to a homeomorphism of the line, and define

τ(f̃) = limn→∞
f̃n(p0)

n
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Intuitively, the translation number captures the average distance f̃ translates
points along the line.

Much like trace, this is conjugation-invariant (in fact it is invariant under semi-
conjugacy), and not a homomorphism.

Exercise.
Find f̃ , g̃ with τ(f̃) = τ(g̃) = 0 but τ(f̃ g̃) = 1.

Problem.
This does not define a function on Homeo(S1) since τ depended on our choice of

the lift.
There are two solutions to this problem

(i) Look at τ mod Z, i.e. limn→∞
f̃n(0)
n

mod Z. This does not depend on the lift,
so τ mod Z: Homeo+(S1)→ R/Z.

(ii) Alternatively, we can define a “cocycle” c(f, g) = τ(f̃ g̃) − τ(f̃) − τ(g̃), it is
easy to check that c(f, g) does not depend on the choice of lifts f̃ and g̃.

Remark.
τ mod Z does not give coordinates. For example, take Γ = π1(Σg) and the Fuch-

sian representation (PSL(2,R)). Then τ mod Z(ρ(γ)) = 0 for all γ, which is the
same as for the trivial representation!

So if we want to define coordinates, we should look at c instead.

4. A cocycle

c(f, g) satisfies the cocycle condition (exercise!), in other words [c] ∈ H2
b (Homeo+(S1);R).

(for the experts: the translation number is a quasimorphism... this is the standard
way to turn a quasimorphism into an element of second bounded cohomology)

Given ρ : Γ→ Homeo+(S1), use representation ρ to pullback ρ∗[c] ∈ H2
b (Γ;R).

Theorem 4.1 (Ghys, Matsumoto).
ρ ∈ Hom(Γ,Homeo+(S1))/ ∼ is determined by ρ∗[c] ∈ H2

b (Γ,R), and the value of
τmodZ(ρ(γ)) on any set of generators for Γ.
Hence, the translation numbers captures the space completely, and can be thought
of as giving “coordinates”. This perspective I learned from Danny Calegari.

5. Applications of “rotation number coordinates”

The study of translation numbers plays an important role in the proofs of the
following theorems:
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1. Milnor-Wood [Wo]: (Existence of flat connection)
S1 → E admits a flat connection ⇐⇒ |Euler number| ≤ |χ(Σ)|

↓
Σ

the Euler number comes from a the characteristic class of bundle. Wood’s proof
makes essential use of understanding the translations of lifts of homeomorphisms.

2. Matsumoto [Mat87]: (Rigidity) ρ : π1(Σ) → Homeo+(S1) has maximal Euler
number ⇐⇒ semi-conjugate to Fuchsian representation.

3. Calegari [Ca]: (Rigidity) Calegari uses Matsumoto’s ideas and a study of
rotation numbers to give examples of groups Γ with few or only rigid actions on S1.

4. Calegar-Walker [CW]: Given free group F, describe “slices” of Hom(F,Homeo+(S1))
in translation number coordinates. The figures below (drawn by Calegari and Walker)
illustrate the possible translation numbers of a word in the generators of F as com-
pared to the translation numbers of the generators.

Figure 4: From Calegari, Walker Ziggurats and rotation numbers [CW]
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6. Applications, Cont.

1. Mann [Man14]: (Connected components and rigidity)
Using techniques from Calegari– Walker, I found

(i) New examples of rigid representations π1(Σg)→ Homeo+(S1) with non-maximal
Euler number.

(ii) Identification/classification of more connected components of Hom(π1(Σg),Homeo+(S1))/ ∼.

The new rigid representations are constructed as follows: take a Fuchsian repre-
sentation. If the Euler number of this is diviisble by k, the representation lifts to
the k-fold cover of the circle. Any such lift (there are k2g of them) will give a rigid
representation.

Figure 5: lift to k-fold cover of S1

7. Open Questions

1. Does Hom(π1(Σ),Homeo+(S1))/ ∼ have infinitely many connected compo-
nents?

(i) We have that Hom(π1(Σ), PSL(2,R))/ ∼ has finitely many, classified by Gold-
man [Go].

2. Are there more examples of rigid representations in

Hom(π1(Σ),Homeo+(S1))/ ∼ ?
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3. Is the space of foliated S1 × Σ products connected? (flat bundles with Euler
number 0)

4. Is Hom(π1(Σ),Homeo+(S1)) locally connected?
5. How about groups other than π1(Σ)?

8. Another Perspective

We examine the question of whether Γ acts nontrivially/faithfully on S1.
Theorem 8.1.

Γ acts faithfully on R ⇐⇒ Γ is left-orderable. Left-orderable means that there
exists a total order on Γ satisfying a < b ⇐⇒ ga < gb.

For example, R (as an additive group, with the usual order) is left-orderable.
Application (Witte Morris [Mo]).

If Γ < SL(n,Z) is finite index (and n ≥ 3), then Γ has no faithful action on S1.

Here is the idea of the proof: Using a theorem of Ghys, show that (a finite index
subgroup of) Γ fixed a point in the circle. This gives an action on the line R. Now
show that the (finite index subgroup of) Γ is not left-orderable – contradiction!

Figure 6: A fixed point on the circle gives an action on the line

Remark.
It is an open question if Γ < SL(n,R) lattice for n ≥ 3 has a faithful action on

S1, or if all actions factor through a finite quotient.
Many partial/related results are known (see references in [Mo]).

Let’s return to our original question – trying to find an algebraic characterization
of groups that act faithfully on the circle, similar to left orderable groups acting on
the line. We want to define “circular orderability” so that the following theorem is
true:
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Theorem 8.2.
Γ acts faithfully on S1 ⇐⇒ Γ is circularly-orderable.
Remark: whatever “circluarly orderable” means, S1 should be an example.

How to capture the “order” of points on S1? Comparing two points doesn’t make
sense, but for 3 points, we can say x < y < z in terms of their counterclockwise
position on the circle. In other words, it makes sense to say that the ordered triple
(x, y, z) is positively or negatively oriented. Also, this orientation of triples is left-
multiplication invariant.

Figure 7: Circularly-orderable

9. Circular Orders

Definition 9.1. We define a circular order on Γ to be a function ord : Γ×Γ×Γ→
{±1, 0} that satisfies a compatibility condition on 4-tuples. It maps

(x, x, y) 7→ 0,
(x, y, z) 7→ ±1 according to the orientation of the triple.

Exercise.
What is the compatibility condition on 4-tuples?

Hint: The “compatibility condition” on 4-tuples is the cocycle condition! (for
inhomogeneous cocyles). In other words,

[ord] ∈ H2
b (Γ;Z)

The following theorem turns out to be true
Theorem 10.1.
(Recall) If Γ has circular-order,

∃ a faithful ρ : Γ→ Homeo+(S1).
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Theorem 10.2 (Thurston, Ghys, ... ).

[ord] = 2ρ∗[c] in H2
b (Γ;R).

10. Homework Exercise

• Describe the actions of your favorite group Γ on S1.

• There are many interesting “geometric” examples to consider: Γ = lattice in
semi-simple Lie group, Γ = π1(M

3),Γ = MCG(Σg,∗),Γ = MCG(Σg,b), π1(Σg),etc.

11. Epilogue (not covered in talk)

Other perspectives on group actions on the circle not mentioned yet:

• Semi-conjugacy versus conjugacy. (nice intro in [BFH]) (also relates to regu-
larity issues, see below)

• Regularity: Compare Hom(Γ,G) where G = Diffr(S1) or G = Homeo(S1) or
G = PSL(2,R). What about G = QS(S1)?

(Goldman [Go] for PSL(2,R), Bowden [Bo] and Navas [Na] for Diffr, Ghys )

• Many other perspectives on bounded cohomology, e.g. continuous bounded
cohomology, and applications to actions on S1 ([Bu] and references there)

• Tools from low dimensional dynamics, often applicable in higher regularity
case. In Homeo case, new ideas in [Mat14] may be promising.

• This talk focused on Γ... but can we understand Homeo+(S1) better as a
group? How to think of it as an infinite dimensional Lie group? What about
Diff+(S1) (truly a ∞-dimensional Lie group)? What is the algebraic structure
of these groups, and how does it relate to their topological structure? (see e.g.
[Man15])
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