An Introduction to Lorentzian 3-manifold

Youngju Kim

Notes by Serena Yuan

1. Lorentzian Geometry

DEFINITION 1.1. We define a Lorentzian vector space $V \in \mathbb{R}^{2,1}$ as a 3-dimensional real vector space with Lorentzian inner product, a symmetric, non-degenerate bilinear form of signature (2, 1).

Consider the system given by $u \cdot v = u_1 v_1 + u_2 v_2 - u_3 v_3$, that with the standard basis $\{e_1, e_2, e_3\}$ may be represented by $\begin{pmatrix} 1 \\ & 1 \\ & -1 \end{pmatrix}$.

1.1 Vectors in Lorentzian Vector Spaces

A vector $v \neq 0 \in V$ is called

- timelike if $v \cdot v < 0$
- *lightlike* (null) if $v \cdot v = 0$
- spacelike if $v \cdot v > 0$.

Figure 1: Diagram of spacelike and timelike cones

We define the Lorentz-orthogonal space v^{\perp} as the 2-dimensional linear subspace given by $\{u \in \mathbb{R}^{2,1} | u \cdot v = 0\}$.

- For timelike v, we have that v^{\perp} is positive definite.
- For *lightlike* v, we have that v^{\perp} is tangent to the null cone.
- For spacelike v, we have that $\{s, s^-, s^+\}$ forms the null-basis and we see that v is a spine as shown in Fig. 2.

Figure 2: spacelike v

1.2 Properties

DEFINITION 1.2 (TIME ORIENTATION). We define a non-spacelike vector v to be *future-pointing* if its third component $v_3 > 0$, and it v is *past-pointing* otherwise $(v_3 \leq 0)$.

DEFINITION 1.3 (CROSS PRODUCT). We relate the determinant of a matrix formed by column vectors u, v, w with the cross product,

$$Det(u, v, w) = u \times v \cdot w.$$

EXAMPLE.

For null basis $\{s, s^-, s^+\}$,

$$s \times s^- = s^-,$$

$$s \times s^+ = -s^+.$$

1.3 Minkowski Space

We let E be the affine space modeled on $\mathbb{R}^{2,1}$. E is also a smooth, oriented manifold with a Lorentzian (semi-Riemannian) metric, and it is oriented since $\mathbb{R}^{2,1}$ is oriented.

Considering its time orientation, it is additionally defined as a flat *Lorentzian* manifold.

EXAMPLE.

 $\mathbb{H}^2_{\mathbb{R}} = \{v: \text{ future-pointing} | v \cdot v = -1\} \text{ (or } \{\text{timelike lines}\} / \sim), \text{ where } \cosh(\rho(u, v)) = u \cdot v. \text{ We can see that this hyperbolic plane sits in Minkowski space.}$

1.4 Linear Lorentzian Isometries

We give a few examples of Linear Lorentzian Isometries,

• O(2,1): Group of linear transformations that preserves $B = \begin{pmatrix} 1 & & \\ & 1 & \\ & & -1 \end{pmatrix}$

$$= \{A \in GL(3, \mathbb{R}) | A^T B A = B\}.$$

- SO(2, 1) : O(2, 1) ∩ GL⁺(3, ℝ), which has positive determinant if and only if it is orientation-preserving.
- $\operatorname{Isom}^+(E) = \operatorname{orientation-preserving}$ isometries of E.

Remarks.

(i) O(2, 1) has four components. $SO^{0}(2, 1)$ is the identity component; it is orientation and time-orientation preserving.

For example, for a spacelike vector s,
$$\begin{pmatrix} 1 & & \\ & -1 & \\ & & -1 \end{pmatrix}$$
 is in the null basis $\{s, s^-, s^+\}$

of s. We may see this in Fig. 3.

(ii) Spine reflection: orientation-preserving but with reverse time-orientation in \mathbb{R} .

(iii) We explicitly choose a point $o \in E$. Any affine transformation can be written as

$$\gamma(p) = o + g(p - o) + \vec{v}, \vec{v} \in \mathbb{R}^{2,1}, g \in GL(3, \mathbb{R}).$$

(iv) $\gamma \in \text{Isom}^+(E) \iff g \in SO(2,1)$, where γ is the "affine deformation of g" and $L(\gamma)$ is the "linear part of γ ".

Figure 3: spacelike v

(v) $\gamma \in \text{Isom}^+(E)$ is called hyperbolic, parabolic, or elliptic if $g \in SO(2,1)$ is hyperbolic, parabolic or elliptic. (g is the linear part of γ).

EXAMPLE ("HYPERBOLIC BOOST").

We have γ such that γ is conjugate to g, where g has the representation (where ch = hyperbolic cosine, sh = hyperbolic sine)

 $g = \begin{pmatrix} 1 & 0 & 0 \\ 0 & cht & sht \\ 0 & sht & cht \end{pmatrix}, \text{ for } t \in \mathbb{R}^+ \iff cht \neq 1. \text{ Then we can write } \gamma(p) =$

 $0 + g(p - 0) + \vec{v}, \vec{v} \in \mathbb{R}^{2,1}$ where g keeps $\langle e_2, e_3 \rangle$ invariant.

CASE 1: g keeps $\langle e_2, e_3 \rangle$ invariant. If $v \in \langle e_2, e_3 \rangle$, then $\gamma|_{\langle e_2, e_3 \rangle}$ has a fixed point $p \in \langle e_2, e_3 \rangle$.

PROOF OF CASE 1.

$$\gamma|_{\langle e_2, e_3 \rangle} : \begin{pmatrix} cht & sht \\ sht & cht \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}.$$
With $ch^2t - sh^2t = 1$ we have
 $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} cht - 1 & sht \\ sht & cht - 1 \end{pmatrix}^{-1} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$ for $cht \neq 1$.

So we have that $\gamma(p) = p \in 0 + \langle e_2, e_3 \rangle$ and therefore γ fixes a line L passing through p and parallel to $\langle e_1 \rangle$ pointwisely.

CASE 2: g does not keep $\langle e_2, e_3 \rangle$ invariant.

In this case, γ has no fixed points and L is kept invariant with translations denoted by $\gamma|_L$.

This implies that $\langle \gamma \rangle$ acts freely and properly discontinuously on E and $E/\langle \gamma \rangle = \mathbb{R}^2 \times S^1$ is nonimpact.

2. Group Actions by Isometries

DEFINITION 2.1. For X a locally compact space and G a group that acts on X, G acts properly discontinuously on X if for every compact set $\kappa \subset X$, the set $\{\gamma \in \kappa | \gamma \kappa \cap \kappa \neq \emptyset\}$ is finite.

We say that G acts *freely* if it does not fix any points.

Remark.

Milnor (77) asked whether a non-amenable group could act properly by affine transformations. In other words, we have the question: can a discrete free group act properly discontinuously on \mathbb{R}^n ? By the Tit's alternative, every finitely generated linear group is either virtually solvable or contains a subgroup isomorphic to the free group of rank 2. Milnor proposed an affine deformation of a free discrete subgroup of SO(2,1) to answer this question (for example, a Schottky group).

EXAMPLE 2.2

An example of a free and properly discontinuous action is given by E/G, where E be the affine space modeled on $\mathbb{R}^{2,1}$ and a group G. This is a covering space, Hausdorff manifold, and a flat Lorentzian manifold.

Example 2.3

We have linearly independent vectors $t_1 \cdot t_2, t_3 \in \mathbb{R}^{2,1}$.

$$G = \langle Z_1, Z_2, Z_3 \rangle \cong \mathbb{Z}^3.$$

 $Z_i : p \mapsto p + t_i$ where Z_i acts freely and properly discontinuously on E.

 $\Rightarrow E/G$ is a compact Lorentzian manifold for E and G defined in the previous example.

Next, we look at developments in the efforts to understand "affine deformations" of a discrete group $\Gamma < O(2, 1)$; i.e., G < Isom(E) with $L(G) = \Gamma$.

[Fried-Goldman, 1983]: If a group G of affine transformations acts properly discontinuously on \mathbb{R}^3 then it is either virtually solvable or it does not act cocompactly in which case L(G) is conjugate to a subgroup of O(2, 1).

[Mess 2009]: An affine deformation of a closed surface group *cannot* act properly discontinuously on E.

3. Margulis Invariants

We consider an element $g \in O^0(2, 1)$, a hyperbolic group. There exists three distinct eigenvalues $(1, \lambda, \frac{1}{\lambda})$ such that $0 < \lambda < 1 < \frac{1}{\lambda}$. We may note that the eigenspaces of $\lambda, \frac{1}{\lambda}$ are null.

Then we have that

 $g^0 =$ unit spacelike 1-eigenvector $g^+ =$ future-pointing $\frac{1}{\lambda}$ -eigenvector $g^- =$ future-pointing λ -eigenvector, and $[g^0, g^-, g^+] > 0$, giving that g is positively oriented.

DEFINITION 3.1. Let $\gamma \in \text{Isom}(E)$, $L(\gamma) = g$. Then $\langle \gamma \rangle$ acts freely if and only if $\forall p \in E, \gamma(p) - p \notin \langle g^-, g^+ \rangle$ so there exists a unique l_{γ} invariant line.

So we have that $\gamma(p) = p + \alpha g^0$, $\alpha \neq 0$ on l_{γ} . Then $\alpha = \alpha(\gamma)$ is called the *Margulis* invariant of γ .

PROPOSITION 3.2.

$$\alpha(\gamma) = (\gamma(p) - p)g^0 \quad \forall \ p \in E.$$

PROPOSITION 3.3.

 $\alpha(\gamma) = 0$ if and only if γ fixes a point.

PROPOSITION 3.4.

$$\alpha(\gamma^{-1}) = \alpha(\gamma) \text{ (from } (g^{-1})^0 = -g^0).$$

PROPOSITION 3.5.

$$\alpha(\eta\gamma\eta^{-1}) = \alpha(\gamma) \quad \forall y \in \text{Isom}(E).$$

OPPOSITE SIGN LEMMA [MARGULIS]:

Let $\gamma, \eta \in \text{Isom}(E)$ be hyperbolic or parabolic. If $\alpha(\gamma)\alpha(\eta) < 0$, then $\langle \gamma, \eta \rangle$ cannot act properly on E.

Remark.

[Margulis 83] has shown there exist affine deformations of Schottky groups which act properly discontinuously on \mathbb{R}^3 .

[Charette-Drumm] has generalized the results about Margulis invariants in the Opposite Sign Lemma for parabolic surfaces.

[Drumm 90]: Every generalized Schottky group (including parabolic groups) admits a lot of affine deformations.

THEOREM 3.6. Take group Γ generated by $\gamma_1, ..., \gamma_n$, $\Gamma = \langle \gamma_1, ..., \gamma_n \rangle$ Then, $L(\Gamma) = \langle g_1, ..., g_n \rangle$ is a Schottky group.

Suppose there exists a simply connected region \triangle bounded by 2n pairwise disjoint crooked planes $c_1^-, c_1^+, ..., c_n^-, c_n^+$ such that $\gamma_i c_i^- = c_i^+$ for i = 1, ..., n. Then, \triangle is a fundamental domain for Γ and Γ acts freely and properly discontinuously on E.