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1. Lorentzian Geometry

DEFINITION 1.1. We define a Lorentzian vector space V € R?! as a 3-dimensional
real vector space with Lorentzian inner product, a symmetric, non-degenerate bilinear
form of signature (2, 1).

Consider the system given by u - v = uyv; + usvy — uzvs, that with the standard
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basis {e1, €2, e3} may be represented by 1
-1

1.1 Vectors in Lorentzian Vector Spaces

A vector v # 0 € V is called
o timelike if v-v <0
o lightlike (null) if v-v =0

e spacelike if v-v > 0.
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Figure 1: Diagram of spacelike and timelike cones
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We define the Lorentz-orthogonal space v— as the 2-dimensional linear sub-

space given by {u € R*»!|u-v = 0}.



e For timelike v, we have that v' is positive definite.
e For lightlike v, we have that v* is tangent to the null cone.

e For spacelike v, we have that {s,s™, st} forms the null-basis and we see that
v is a spine as shown in Fig. 2.

Figure 2: spacelike v

1.2 Properties

DEFINITION 1.2 (TIME ORIENTATION). We define a non-spacelike vector v to
be future-pointing if its third component vs > 0, and it v is past-pointing otherwise
(Ug < O)

DEFINITION 1.3 (Cross PropucT). We relate the determinant of a matrix
formed by column vectors u, v, w with the cross product,

Det(u, v,w) = u X v - w.

EXAMPLE.
For null basis {s,s,s"},

SX S8 =8,
sx st =—st.

1.3 Minkowski Space



We let E be the affine space modeled on R%!. E is also a smooth, oriented man-
ifold with a Lorentzian (semi-Riemannian) metric, and it is oriented since R*! is
oriented.

Considering its time orientation, it is additionally defined as a flat Lorentzian
manifold.

EXAMPLE.

H2 = {v: future-pointing|v-v = —1} (or {timelike lines}/ ~), where cosh(p(u, v)) =
u - v. We can see that this hyperbolic plane sits in Minkowski space.

1.4 Linear Lorentzian Isometries

We give a few examples of Linear Lorentzian Isometries,

e O(2,1): Group of linear transformations that preserves B = 1

— {A € GL(3,R)|ATBA = BY.

e SO(2,1): O(2,1)NGL™(3,R), which has positive determinant if and only if it
is orientation-preserving.

e Isom™(E) = orientation-preserving isometries of E.

REMARKS.

(i) O(2,1) has four components. SO%(2,1) is the identity component; it is orien-
tation and time-orientation preserving.
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For example, for a spacelike vector s, -1 is in the null basis {s, s~, s*}
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of s. We may see this in Fig. 3.

(ii) Spine reflection: orientation-preserving but with reverse time-orientation in

R.

(iii) We explicitly choose a point 0 € E. Any affine transformation can be written
as

v(p) =0+ g(p—o0) + 7,7 € R* g € GL(3,R).

(iv) v € Isom™ (F) <= g € SO(2,1), where + is the ”affine deformation of g”
and L(7) is the "linear part of ~”.



Figure 3: spacelike v

(v) v € Isom™(E) is called hyperbolic, parabolic, or elliptic if ¢ € SO(2,1) is
hyperbolic, parabolic or elliptic. (g is the linear part of ).
EXAMPLE (“HYPERBOLIC BOOST”).
We have 7 such that v is conjugate to g, where g has the representation (where
ch = hyperbolic cosine, sh = hyperbolic sine)
1 0 0
g =10 cht sht|, fort € Rt <= cht # 1. Then we can write y(p) =
0 sht cht
0+ g(p—0)+ 0, € R*! where g keeps < ey, €3 > invariant.
CASE 1: g keeps < ey, €3 > invariant. If v €< ey, e3 >, then |, c,~ has a fixed
point p €< ey, e3 >.
Proor oF CASE 1.
_(cht sht\ [z v\ (@
I 0-0)-6)

With ch?t — sh?*t =1 we havia
r\ (cht—1 sht \ [u
<y) n ( sht  cht — 1) (112) for cht 7 1.
[
So we have that y(p) = p € 0+ < ey, e3 > and therefore ~y fixes a line L. passing
through p and parallel to < e; > pointwisely.

CASE 2: g does not keep < eg, e3 > invariant.

In this case, v has no fixed points and L is kept invariant with translations denoted
by |z

This implies that < v > acts freely and properly discontinuously on E and £/ <
v >=R? x S! is nonimpact.



2. Group Actions by Isometries

DEFINITION 2.1. For X a locally compact space and G a group that acts on
X, G acts properly discontinuously on X if for every compact set K C X, the set
{v € K|y Nk # 0} is finite.

We say that G acts freely if it does not fix any points.

REMARK.

Milnor (77) asked whether a non-amenable group could act properly by affine
transformations. In other words, we have the question: can a discrete free group act
properly discontinuously on R"? By the Tit’s alternative, every finitely generated
linear group is either virtually solvable or contains a subgroup isomorphic to the free
group of rank 2. Milnor proposed an affine deformation of a free discrete subgroup
of SO(2,1) to answer this question (for example, a Schottky group).

EXAMPLE 2.2

An example of a free and properly discontinuous action is given by E/G, where
E be the affine space modeled on R*! and a group G. This is a covering space,
Hausdorff manifold, and a flat Lorentzian manifold.

EXAMPLE 2.3

We have linearly independent vectors t;.to, t5 € R*!.

G =< Zl> ZQ, Zg >%J Z3.
Z; . p— p+t; where Z; acts freely and properly discontinuously on E.

= F/G is a compact Lorentzian manifold for E and G defined in the previous
example.

Next, we look at developments in the efforts to understand ”affine deformations”
of a discrete group I' < O(2,1); i.e., G < Isom(FE) with L(G) =T.

[Fried-Goldman, 1983]: If a group G of affine transformations acts properly dis-
continuously on R? then it is either virtually solvable or it does not act cocompactly
in which case L(G) is conjugate to a subgroup of O(2,1).

[ Mess 2009]: An affine deformation of a closed surface group cannot act properly
discontinuously on E.

3. Margulis Invariants

We consider an element g € 0°2,1), a hyperbolic group. There exists three
distinct eigenvalues (1, A, 1) such that 0 < A < 1 < 1. We may note that the
eigenspaces of A, % are null.

Then we have that



¢° = unit spacelike 1-eigenvector
g" = future-pointing %—eigenvector
g~ = future-pointing A-eigenvector,
and [¢°, g7, 97| > 0, giving that g is positively oriented.

DEFINITION 3.1. Let v € Isom(E), L(y) = g. Then < v > acts freely if and only if
Vp e E,~v(p) —p ¢< g ,9" > so there exists a unique [, invariant line.

So we have that y(p) = p+ag®,a # 0 on [,. Then a = a(y) is called the Margulis
invariant of ~.

PROPOSITION 3.2.

a(y) = (v(p) —p)g® VpeEE.
PRroproOsSITION 3.3.
a(y) = 0 if and only if v fixes a point.

PROPOSITION 3.4.

a(y™h) = a(y) (from (g71)° = —¢°).
PROPOSITION 3.5.

a(nyn™) = a(y) Yy € Isom(E).

OPPOSITE SIGN LEMMA [MARGULIS]:

Let ,n € Isom(E) be hyperbolic or parabolic. If a(y)a(n) < 0, then < v,n >
cannot act properly on E.

REMARK.

[Margulis 83] has shown there exist affine deformations of Schottky groups which
act properly discontinuously on R3.

[Charette-Drumm]| has generalized the results about Margulis invariants in the
Opposite Sign Lemma for parabolic surfaces.

[Drumm 90]: Every generalized Schottky group (including parabolic groups) ad-
mits a lot of affine deformations.

THEOREM 3.6.

Take group I' generated by 1, ..., Tn,

L=<,y Y >
Then, L(T') =< ¢1, ..., go > is a Schottky group.

Suppose there exists a simply connected region 2\ bounded by 2n pairwise disjoint
crooked planes ¢, cy,...,c,, ¢t such that v;c; = ¢f for i = 1,...,n. Then, A is a
fundamental domain for I' and I" acts freely and properly discontinuously on E.
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