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1. Riemann Surfaces

Definition 1.1. A conformal structure is an atlas on a manifold such that the
differentials of the transition maps lie in R+ × SO(n).

Definition 1.2. A Riemann surface is a 2-dimensional manifold together with
a conformal structure; or, equivalently, a 1-dimensional complex manifold.

Figure 1: Examples of Riemann Surfaces

1.1 Riemann’s Goal

Riemann’s goal was to classify all Riemann surfaces up to isomorphism; i.e. up to
biholomorphic maps.

There are two types of invariants:

• discrete invariants, which arise from topology (for example, genus)

• continuous invariants (called moduli), which come from deforming a conformal
structure.
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Figure 2: Conformal Deformation

1.2 Riemann’s Idea

Riemann’s idea was that the space of all closed Riemann surfaces up to isomor-
phism is a “manifold”, a geometric and topological object:

M = {closed Riemann surfaces}/∼

=
⋃
g≥0

Mg,

where Mg = {genus g Riemann surfaces}/∼ is a connected component of M . Now
the goal is to understand the topology and geometry of each Mg.

2. Uniformization

We will now investigate why genus is the only discrete invariant. Given a Riemann
surface Xg, its conformal structure lifts to its universal cover, X̃g. Uniformization
Theorem says:

X̃g :=


Ĉ if g = 0

C if g = 1

H2 if g > 2

Remarks.

i. Each of Ĉ, C, H2 has a distinct natural conformal structure.

ii. For g=0, Xg
∼= Ĉ so M0 = {Ĉ}.

iii. Each of Ĉ, C, H2 admits a Riemannian metric of constant curvature, which is
compatible with its natural conformal structure.
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Ĉ C H2

κ 1 0 -1

So Xg admits a metric of constant κ, and we can identify

Mg = {genus g Riemann surfaces with constant curvature }/isometry

(For g=1, we need to normalize area as well.)

3. Teichmüller Space

We fix a topological surface S of genus g.

Definition 3.1. A marked Riemann surface (X, f) is a Riemann surface X to-
gether with a homemorphism f : S → X. Two marked surfaces (X, f) ∼ (Y, g) are
equivalent if gf−1 : X → Y is isotopic to an isomorphism.

Definition 3.2. We define the Teichmüler Space

Tg = {(X, f)}/ ∼

For g ≥ 2, Tg is also the set of marked hyperbolic surface (X, f), where the equivalent
relation is given by isotopy to an isometry.

There is a natural forgetful map Tg →Mg by sending (X, f) 7→ X. We note that
(X, f) and (X, g) are equivalent in Mg if and only if exists an element h ∈ Homeo+(S)
such that f = gh−1, where h well-defined up to isotopy. This introduces:

Definition 3.3. The mapping class group is

Γg = Homeo+(S)/Homeo0(S),

where Home0(S) is the connected component of the identity.
We define an action of Γg y Tg by (X, f) 7→ (X, fh−1). By the above discussion,

Tg/Γg = Mg.

5. Topology on Tg
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Teichmüller space Tg is naturally a manifold homeomorphic to R6g−g, and Γg acts
properly discontinuously on Tg. Thus, Mg is an orbifold with πorb

1 (Mg) = Γg.
We are able to see the topology in two ways:
By Representation theory:

Tg ↪→ Hom(π1(S), PSL2(R))/PSL2(R) = char2(π1(S)),

where the image of Tg is the open subset of discrete and faithful representations. A
simple counting argument shows

dim(Γg) = dim char2(G) = (2g − 1) ∗ 3− 3 = 6g − 6.

By Fenchel-Nielson Coordinates:
Example 5.1. Dehn Twist: We define an element Dα ∈ Γg, where α is a simple

closed curve on S.

Figure 3: Dehn Twist

Example 5.2. Fenchel-Nielson coordinates on T1,1 (The Teichmüller space of the
once-punctured torus):

Given the once-punctured torus S. Fix α, β on S, α will be a pants decomposition
of S and β a seam. Let (X, f) ∈ T1,1. As shown in Figure 4, then the map f
identifies α with a curve (also called) α in X. Let ` = `X(α) be the length of the
unique geodesic in X in the homotopy class of α.

As seen on the right side of the figure, in hyperbolic geometry, there exists a
unique arc γ that intersects α perpendicularly on both sides. Let ω be the arc in α
between the foots of the of ω. Now let β′ = γ∪ω. This is a closed curve which differs
from the image of β in X by some power of Dehn twist along α, i.e. β′ = Dn

α(β).
We define

τ = n`+ `x(ω)
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Definition 5.3 (FN Coordinates). The Fenchel-Nielsen coordinates relative
to the curves (α, β) is

T1,1 → R+ × R, X 7→ (`, τ)

Figure 4: FN on T1,1

In general (for higher-dimensional cases), we need to fix a pants decomposition
Σ = {α1, ..., α3g−3} on S and a set of 3g−3 seams. Then the FN coordinates relative
to Σ is

Tg → R3g−3
+ × R3g−3

X 7→ (`1, ..., `3g−3, τ1, ..., τ3g−3)

6. Teichmüller Metric
(Or how to compare conformal structures)

If two points in Teichmüller space (X, f) 6= (Y, g), then gf−1 : X → Y is not
homotopic to a conformal map. Our goal is to quantify how far gf−1 is from being
conformal.

Let h : X → Y be an orientation-preserving diffeomorphism. For p ∈ X,, we have

(dh)p : TpX → Tf(p)Y

(dh)p is R-linear, but not necessarily C-linear. There is a decomposition

(dh)p = R

(
a 0
0 b

)
S,

where R and S are rotations, and a, b > 0.
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Definition 6.1. The dilatation at p as

Kp =
max{a, b}
min{a, b}

≥ 1

Definition 6.2. The dilatation of h is

Kh = suppKp ≥ 1

We have:
(i) (dh)p is C-linear iff a = b iff Kp = 1
(ii) h is conformal iff Kh = 1.

Definition 6.4. h is a quasi-conformal map if Kh <∞. This holds automati-
cally if X is compact.

Definition 6.3 (Teichmüller Distance). The define the Teichmüller Dis-
tance is

dT ((X, f), (Y, g)) =
1

2
log inf

h∼gf−1
Kh

where infh∼gf−1 Kh is the smallest dilatation of a quasi-conformal map preserving the
marking.

Lemma. dT is a metric.

Figure 5: Ex. of extremal map h
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Example.
Consider

h =

(
2 0
0 1

2

)
We see Kh = 4. h turns out to be the unique extremal map. This means that any
map h′ ∼ h has bigger dilatation, Kh′ > Kh. Hence dT (X, Y ) = log(4)

2
.

Definition 6.5 (Quadratic Differential). A quadratic differential on
X ∈ Tg, is q : TX → C. Locally, q has the form q = q(z)dz2 where q(z) is
holomorphic.

Remark. q has 4g − 4 zeroes counted with multiplicity.
Definition 6.6. If p not a zero of q, q(0) 6= 0 in local coordinates, then we can

take a branch of
√
q(z) and integrate to obtain a natural coordinates ω for q:

ω =

∫ √
q(z)dz, q = dω2

The transition of natural coordinates (or the change of charts between natural
coordinates) includes translations and possible sign flip, since dω2 = (dω′)2 so ω′ =
±ω + c.

So ω defines a (singular) flat Euclidean metric |dω|2 on X (singularities come
from the zeros of q). Conversely, a collection of natural coordinates determines a
quadratic differential.

Example.
If we take X from the previous example, then let q = dz2.

Let QD = {quadratic differentials on X}. By Riemann-Roch, QD is a complex
vector space of dimC = 3g − 3. Also, QD(X) = T ∗x (Tg) = T ∗x (Mg).

Definition 6.7. We define an L1 norm on QD(X). Let q = q(z)dz2. Let

||q||1 =

∫
|q(z)|dzdz̄

This is just the area of X in the (singular) flat metric.
Definition 6.8. For a point X ∈ Tg and q ∈ QD(X), denote the open unit ball

by QD1(X) = {||q|| < 1}.
Definition 6.9 (Teichmüller Map).

For X ∈ Tg and q ∈ QD1(X), let

K =
1 + ||q||
1− ||q||

≥ 1.
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Set ω = u+ iv to be a natural coordinate for q, and define a new natural coordinate
by ω′ =

√
Ku + i 1√

K
v. This new coordinate ω′ determines a surface Yq ∈ Tg and a

canonical map X
hq−→ Yq, called a Teichmüller map.

Theorem 6.10. We have
(i) hg is the unique extremal map in its homotopy class.
(ii) QD1(X)→ Tg such that q 7→ Yq is a homeomorphism.

Consequences.
(i) dT is complete.

(ii) t 7→ e
t
2u+ ie

−t
2 v defines a bi-infinite geodesic line in this metric.

(iii) Any X, Y ∈ Tg is connected by one and only one segment of such a line.
Remarks.

(i) (T, dT ) ∼= (H2, hyperbolic metric) but for g ≥ 2, (Tg, dT ) is not hyperbolic in any
sense. (Masur, Masur-Wolf, Minsky)
(ii) Geodesic rays do not always converge in the Thurston boundary. (Lenzhen)
(iii) (Masur-Minsky, Rafi) gave a combinatorial descriptions of Teichmüller geodesics.

7. Weil-Petersson Metric
(or L2-norm on QD(X))

A point X ∈ Tg is a hyperbolic surface. Write the hyperbolic metric in local
coordinates as ds2 = ρ(z)|dz|2. For q1, q2 ∈ Tg, define a Hermetian inner prodcut on
QD(X) by

h(q1, q2) =

∫
X

q1(z)q2(z)

ρ(z)
dzdz̄

Remarks.
(Tg, h) is a Kähler manifold, that is Tg has three natural structures that are all
compatible with each other:

• a complex structure

• a Riemannian structure, the associated Riemannian metric – called the Weil-
Peterssoon metric – is gωp = Real(h)

• and a symplectic structure, the associated WP–symplectic form (i.e. a closed
(1, 1) form) is ω = −Im(h).

Theorem 7.1 (Walpert’s Formula).
Choose a set of FN coordinates on Tg

Φ : Tg → R3g−3
+ × R3g−3
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X 7→ (`1, ..., `3g−3, τ1, ..., τ3g−3)

Then the WP sympletic form is

ω =
1

2

3g−3∑
i=1

d`i ∧ dτi

Example.
For T1,1, its natural complex structure is H2. For y large, τ ∼ x

y
, ` ∼ x

y
, therefore

ω = d` ∧ dτ ∼ 1

y3
(dx ∧ dy),

thus

gwp ∼
1

y3
(dx2 + dy2)

when y is large.

Figure 6: T1,1 Ex. of Walpert’s Formula

We that that the arc length of the imaginary axis
∫

1
y32
|dz| < ∞. This implies

that gwp is incomplete.
Also, κwp ∼ −y for y large, so gwp has negative Gaussian curvature with

sup κ = −∞. But κwp is bounded away from 0.
Remarks.

(i) In general, the WP metric is always incomplete.
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(ii) It always has negative sectional curvature, but for dimC(Tg) > 2, supκwp = 0
and inf κwp = −∞ (Huang).
(ii) (Brock) showed (Tg, gwp) is quasi-isomorphic to a pants graph.

8. Thurston Metric
(or how to compare hyperbolic structures)

Definition 8.1.
A map h : X → Y is a Kh-Lipschitz map

d(h(x), h(y)) ≤ Khd(x, y)

Definition 8.2. For X, Y ∈ Tg, define

L(X, Y ) = inf
h∼gf−1

Kh

where h is a Lipschitz homeomorphism.
Lemma (Thurston). L(X, Y ) ≥ 1 and is not necessarily symmetric.
Definition 8.3 (Thurston distance). The Thurston distance is dL(X, Y ) =

logL(X, Y ) which by the preceding lemma is an asymmetric metric.
It is also complete.
Theorem 8.4 (Thurston).

L(X, Y ) = supα
`Y (α)

`X(α)
,

where α ranges over all simple close curve on S.
Lemma. If α is a simple closed curve which is a short curve on X or dual to a

short curve on X, then

L(X, Y )
+� max

`y(α)

`x(α)
.

(
+� is = up to additive error)

We do some examples of finding the Thurston distance between points in T1,1.
On i, the length of α is i, and the length of α is 1/y on yi, thus

dL(yi, i)
+� log(y).

On the other hand, by the collar lemma, the length of the blue curve is log(y),
hence

dL(i, yi)
+� log(log(y)).
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Figure 7: lengths on T1,1

On 1 + yi, the length of the blue curve is log(y) + 1
y
, hence

dL(yi, 1 + yi)
+� log(1 +

1

y log y
)

+� 1

y log y
.

Now give a large integer n, let y log y = n, so d(yi, n+ yi) � 1. We see that

dL(i, yi) + d(yi, n+ yi) + d(n+ yi, n+ i) � log n � dL(i, n+ i).

9. Description of Geodesics

We can give the following description of geodesics X, Y ∈ Tg:
Definition 9.1. A map h : X → Y is called extremal if Kh = L(X, Y ).

Theorem 9.2 (Thurston). The set
⋂

h extremal {stretch locus of h} is a geodesic
lamination λ(X, Y ), called the maximally-stretched lamination.

Remarks.
(i) Env(X, Y ) = {geodesics from X to Y } 6= ∅ but |Env(X, Y )| can be infinite. Each
element of Env(X, Y ) must stretch λ(X, Y ) maximally.
(ii) Elements in Env(X, Y ) do not necessarily fellow-travel, the reversal a geodesic
from X to Y may not be a geodesic from Y to X, even after reparametrization
(Lenzhen-Raf-T)
(iii) From the coarse perspective, the shadow map from Tg to the curve complex

Tg → C(S)
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defined by sending X to a short curve on X sends every Thurston geodesic to a
reparametrized quasi-geodesic in C(S) (LRT). The same statement is not true if we
replace S by a proper subsurface of S.

Open Questions.
1. Are there preferred geodesics in Env(X, Y )?
2. Is there a combinatorial description (in the sense of Rafi) of a Thurston geodesic?
Is there a distance formula?
3. What does Env(X, Y ) look like? In T1,1, Env(X, Y ) is the intersection of two
cones; a complete understanding is in progress (Dumas-Lenzhen-Rafi-Tao).
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