Introduction to Teichmiiller Spaces

Jing Tao
Notes by Serena Yuan

1. Riemann Surfaces

DEFINITION 1.1. A conformal structure is an atlas on a manifold such that the
differentials of the transition maps lie in R, x SO(n).

DEFINITION 1.2. A Riemann surface is a 2-dimensional manifold together with
a conformal structure; or, equivalently, a 1-dimensional complex manifold.
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Figure 1: Examples of Riemann Surfaces

1.1 Riemann’s Goal

Riemann’s goal was to classify all Riemann surfaces up to isomorphism; i.e. up to

biholomorphic maps.
There are two types of invariants:

e discrete invariants, which arise from topology (for example, genus)

e continuous invariants (called moduli), which come from deforming a conformal

structure.
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Figure 2: Conformal Deformation

1.2 Riemann’s Idea

Riemann’s idea was that the space of all closed Riemann surfaces up to isomor-
phism is a “manifold”, a geometric and topological object:

M = {closed Riemann surfaces}/~
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where M, = {genus g Riemann surfaces}/~ is a connected component of M. Now
the goal is to understand the topology and geometry of each M,.

2. Uniformization

We will now investigate why genus is the only discrete invariant. Given a Riemann
surface X, its conformal structure lifts to its universal cover, X,. Uniformization
Theorem says:

C ifg=0
X, =4C ifg=1
H? if g >2

REMARKS.
i. Bach of C, C, H? has a distinct natural conformal structure.
ii. For g=0, X, = C so My = {C}.

iii. Each of @, C, H? admits a Riemannian metric of constant curvature, which is
compatible with its natural conformal structure.
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So X, admits a metric of constant , and we can identify
M, = {genus g Riemann surfaces with constant curvature }/isometry
(For g=1, we need to normalize area as well.)
3. Teichmiiller Space
We fix a topological surface S of genus g.

DEFINITION 3.1. A marked Riemann surface (X, f) is a Riemann surface X to-
gether with a homemorphism f : .S — X. Two marked surfaces (X, f) ~ (Y, g) are
equivalent if gf~!' : X — Y is isotopic to an isomorphism.

DEFINITION 3.2. We define the Teichmiiler Space

Ty ={(X, )}/ ~

For g > 2, T, is also the set of marked hyperbolic surface (X, f), where the equivalent
relation is given by isotopy to an isometry.

There is a natural forgetful map T, — M, by sending (X, f) — X. We note that
(X, f) and (X, g) are equivalent in M, if and only if exists an element i € Homeo™ (S5)
such that f = gh™!, where h well-defined up to isotopy. This introduces:

DEFINITION 3.3. The mapping class group is
I', = Homeo™ (S)/Homeog(S),

where Homey(.S) is the connected component of the identity.
We define an action of I'y ~ T, by (X, f) — (X, fh~!). By the above discussion,
T,/T, = M,.

5. Topology on T,



Teichmiiller space T, is naturally a manifold homeomorphic to R%~9 and T'; acts
properly discontinuously on 7,. Thus, M, is an orbifold with 7¢™(M,) = T,.

We are able to see the topology in two ways:

By Representation theory:

T, — Hom(m(S), PSL2(R))/PSLy(R) = chary(m(S)),

where the image of T} is the open subset of discrete and faithful representations. A
simple counting argument shows

dim(I'y) = dim chary(G) = (2g — 1) *3 — 3 = 6g — 6.

By Fenchel-Nielson Coordinates:
EXAMPLE 5.1. Dehn Twist: We define an element D, € I'y, where « is a simple
closed curve on S.
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Figure 3: Dehn Twist

EXAMPLE 5.2. Fenchel-Nielson coordinates on T3 ; (The Teichmiiller space of the
once-punctured torus):

Given the once-punctured torus S. Fix a, 8 on S, a will be a pants decomposition
of S and § a seam. Let (X, f) € Ti;. As shown in Figure 4, then the map f
identifies a with a curve (also called) o in X. Let £ = £x(«) be the length of the
unique geodesic in X in the homotopy class of a.

As seen on the right side of the figure, in hyperbolic geometry, there exists a
unique arc v that intersects a perpendicularly on both sides. Let w be the arc in «
between the foots of the of w. Now let 5’ = yUw. This is a closed curve which differs
from the image of § in X by some power of Dehn twist along «, i.e. 5/ = D*(3).

We define

T=nl+ l,(w)



DEFINITION 5.3 (FN COORDINATES). The Fenchel-Nielsen coordinates relative

to the curves (a, ) is
Tl,l — R+ X R,X — (g, T)
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Figure 4: FN on T

In general (for higher-dimensional cases), we need to fix a pants decomposition
Y ={o,...,as,—3} on S and a set of 3g — 3 seams. Then the FN coordinates relative
to X is
T, —» RY> x R%3

X — (El, . £3g—37 T1y oeny 7'39_3)

6. Teichmiller Metric

(Or how to compare conformal structures)

If two points in Teichmiiller space (X, f) # (Y,g), then gf~! : X — Y is not
homotopic to a conformal map. Our goal is to quantify how far gf~! is from being
conformal.

Let h : X — Y be an orientation-preserving diffeomorphism. For p € X, we have

(dh)p : TpX — Tf(p)Y

(dh), is R-linear, but not necessarily C-linear. There is a decomposition

a 0
(dh), = R (0 b) S,

where R and S are rotations, and a,b > 0.



DEFINITION 6.1. The dilatation at p as

max{a, b} S

1
min{a, b} —

K, =

DEFINITION 6.2. The dilatation of h is
Ky =sup, K, > 1

We have:
(i) (dh), is C-linear iff a = b iff K, =1
(ii) h is conformal iff K} = 1.
DEFINITION 6.4. h is a quasi-conformal map if K, < oo. This holds automati-

cally if X is compact.
DEFINITION 6.3 (TEICHMULLER DISTANCE). The define the Teichmiiller Dis-

tance 1s

dr(X, 1), (V,g)) = 5 log inf K,

h~gf—1
where inf;, ;1 K} is the smallest dilatation of a quasi-conformal map preserving the

marking.
LEMMA. dr is a metric.
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Figure 5: Ex. of extremal map h



EXAMPLE.
Consider

2 0
( %)

We see K;, = 4. h turns out to be the unique extremal map. This means that any

map h' ~ h has bigger dilatation, K > Kj. Hence dr(X,Y) = %.

DEFINITION 6.5 (QUADRATIC DIFFERENTIAL). A quadratic differential on
X €T, isq: TX — C. Locally, ¢ has the form ¢ = ¢(z)dz* where ¢(z) is
holomorphic.

REMARK. ¢ has 4g — 4 zeroes counted with multiplicity.

DEFINITION 6.6. If p not a zero of ¢, ¢(0) # 0 in local coordinates, then we can
take a branch of y/¢(z) and integrate to obtain a natural coordinates w for g:

w—/\/Tz)dz, q = dw?

The transition of natural coordinates (or the change of charts between natural
coordinates) includes translations and possible sign flip, since dw? = (dw')? so W' =
FTw+c.

So w defines a (singular) flat Euclidean metric |dw|?> on X (singularities come
from the zeros of q). Conversely, a collection of natural coordinates determines a
quadratic differential.

EXAMPLE.
If we take X from the previous example, then let ¢ = dz?.

Let @D = {quadratic differentials on X}. By Riemann-Roch, @D is a complex
vector space of dim¢ = 3¢ — 3. Also, QD(X) =T (T,) = T (M,).

DEFINITION 6.7. We define an L' norm on QD(X). Let ¢ = q(z)dz*. Let

llallx =/|q(z)|dzd2

This is just the area of X in the (singular) flat metric.

DEFINITION 6.8. For a point X € T, and ¢ € QD(X), denote the open unit ball
by @D'(X) = {l|q|| < 1}.

DEFINITION 6.9 (TEICHMULLER MAP).

For X € T, and q € QD'(X), let




Set w = u + v to be a natural coordinate for ¢, and define a new natural coordinate
by W' = VKu + i\/%v. This new coordinate w’ determines a surface Y, € T, and a

canonical map X ﬁ> Y,, called a Teichmiiller map.
THEOREM 6.10. We have
(i) hg is the unique extremal map in its homotopy class.
(i) QD' (X) — T, such that ¢ — Y, is a homeomorphism.
CONSEQUENCES.
(i) dr is complete.
(i) t — e2u + ie 2 v defines a bi-infinite geodesic line in this metric.
(iii) Any X,Y € T, is connected by one and only one segment of such a line.
REMARKS.
(i) (T,dr) = (H?, hyperbolic metric) but for g > 2, (T, dr) is not hyperbolic in any
sense. (Masur, Masur-Wolf, Minsky)
(ii) Geodesic rays do not always converge in the Thurston boundary. (Lenzhen)
(iii) (Masur-Minsky, Rafi) gave a combinatorial descriptions of Teichmiiller geodesics.

7. Weil-Petersson Metric
(or L2 norm on QD(X))

A point X € T, is a hyperbolic surface. Write the hyperbolic metric in local
coordinates as ds? = p(z)|dz|?. For q1,q2 € T,, define a Hermetian inner prodcut on

QD(X) by
h(qi,q2) :/X—611(2)(12(2)Cl?~'dz

REMARKS.
(Ty,h) is a Kéhler manifold, that is 7, has three natural structures that are all
compatible with each other:

e a complex structure

e a Riemannian structure, the associated Riemannian metric — called the Weil-
Peterssoon metric - is g,, = Real(h)

e and a symplectic structure, the associated WP-symplectic form (i.e. a closed
(1,1) form) is w = —Im(h).

THEOREM 7.1 (WALPERT’S FORMULA).
Choose a set of FN coordinates on T

®: T, — R x R¥?

8



X — (fl, -"7£3g—377—17 ‘..,7'39_3)

Then the WP sympletic form is
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EXAMPLE.
For T} 1, its natural complex structure is H?. For y large, 7 ~ %,6 ~ %, therefore

1
w=dl Ndr ~ —(dz A dy),
Y

thus .
Gup ™~ E(dZBQ + dy2)

when y is large.

4 oy~r
Y1
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R

Figure 6: T1 1 Ex. of Walpert’s Formula

We that that the arc length of the imaginary axis [ yT12|dz| < oo. This implies
that g, is incomplete.

Also, Ky ~ —y for y large, so g, has negative Gaussian curvature with
sup k = —oo. But k,, is bounded away from 0.

REMARKS.
(i) In general, the WP metric is always incomplete.
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(ii) It always has negative sectional curvature, but for dime¢(7,) > 2, supkyp = 0
and inf k,,, = —oo (Huang).
(i) (Brock) showed (7}, gup) is quasi-isomorphic to a pants graph.

8. Thurston Metric

(or how to compare hyperbolic structures)

DEFINITION 8.1.
A map h: X — Y is a Kj-Lipschitz map

DEFINITION 8.2. For X,Y € T, define
L(X,Y)= inf K,

hrgf=1
where h is a Lipschitz homeomorphism.
LEMMA (THURSTON). L(X,Y) > 1 and is not necessarily symmetric.
DEFINITION 8.3 (THURSTON DISTANCE). The Thurston distance is dp(X,Y) =
logL(X,Y’) which by the preceding lemma is an asymmetric metric.
It is also complete.
THEOREM 8.4 (THURSTON).

Uy (@)
(x(a)’
where « ranges over all simple close curve on S.
LEMMA. If « is a simple closed curve which is a short curve on X or dual to a
short curve on X, then
ty(@)

lo()

(2 is = up to additive error)

L(X,Y) =sup«

L(X,Y) % max

We do some examples of finding the Thurston distance between points in 77 ;.
On i, the length of « is i, and the length of « is 1/y on yi, thus

N
dr(yi, ) < log(y).

On the other hand, by the collar lemma, the length of the blue curve is log(y),
hence

dp (i, y;) = log(log(y)).
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Figure 7: lengths on T 1

On 1 + yi, the length of the blue curve is log(y) + i, hence
1 ) + 1
ylogy”  ylogy
Now give a large integer n, let ylogy = n, so d(y;,n + y;) < 1. We see that

dr(yi, 1+ yi) = log(1 +

9. Description of Geodesics

We can give the following description of geodesics X,Y € T:
DEFINITION 9.1. A map h: X — Y is called extremal if K, = L(X,Y).

THEOREM 9.2 (THURSTON). Theset [, . iremal 15tretch locus of h} is a geodesic
lamination \(X,Y’), called the maximally-stretched lamination.

REMARKS.
(i) Env(X,Y") = {geodesics from X to Y} # 0 but |Env(X,Y)| can be infinite. Each
element of Env(X,Y’) must stretch A\(X,Y) maximally.
(ii) Elements in Env(X,Y) do not necessarily fellow-travel, the reversal a geodesic
from X to Y may not be a geodesic from Y to X, even after reparametrization
(Lenzhen-Raf-T)
(iii) From the coarse perspective, the shadow map from 7} to the curve complex

T, — C(S)
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defined by sending X to a short curve on X sends every Thurston geodesic to a
reparametrized quasi-geodesic in C(S) (LRT). The same statement is not true if we
replace S by a proper subsurface of S.

OPEN QUESTIONS.
1. Are there preferred geodesics in Env(X,Y)?
2. Is there a combinatorial description (in the sense of Rafi) of a Thurston geodesic?
Is there a distance formula?
3. What does Env(X,Y) look like? In T} ;, Env(X,Y) is the intersection of two
cones; a complete understanding is in progress (Dumas-Lenzhen-Rafi-Tao).
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